Уважаемые студенты.

Задание:

- Изучить теорию;
- Написать краткий конспект;
- Разобрать примеры решения;
- Ответить на вопросы;
- По вопросам обращаться 072-1098278 или hvastov@rambler.ru
- Фотоотчёт конспекта прислать в течении 3 дней со дня получения задания на hvastov@rambler.ru

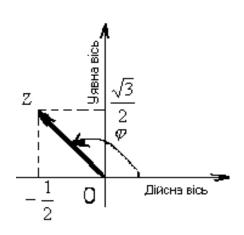
Лекция

Тема: Показательная форма комплексного числа. Формула Эйлера.

План

- 1. Формула Эйлера.
- 2. Показательная форма комплексного числа.
- 3. Решение примеров.
- 4. Задания для самостоятельной.

Рассматривая функцию $y = e^x$ для комплексного переменного, Эйлер установил замечательное соотношение $e^{i\varphi} = \cos\varphi + i\sin\varphi$, которое называется формулой Эйлера. Из этой формулы следует, что каждое комплексное число $z\neq 0$ можно записать в форме: $z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$


Которая называется показательной формой записи. Над комплексными числами, заданными в показательной форме, удобно производить умножение и деление, возведение в натуральную степень и извлечение корня:

$$r_1 e^{i\varphi_2} r_2 e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}; \frac{r_1 e^{i\varphi}}{r_2 e^{i\varphi_2}} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

Пример 1. Представить число $4e^{i\frac{5\pi}{6}}$ в алгебраической форме.

Решение. По условию,
$$r=4$$
, $\varphi = \frac{5\pi}{6}$,

откуда
$$a=4\cos\frac{5\pi}{6}=4\left(-\frac{\sqrt{3}}{2}\right)=-2\sqrt{3}$$
 ,

$$b=4\sin\frac{5\pi}{6}=4\cdot\frac{1}{2}=2$$
. Значит, $z=4e^{i}\frac{5\pi}{6}=-2\sqrt{3}+2i$.

Пример №2. Записать в тригонометрической и показательной формах комплексное число: $z = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Геометрическое изображение числа (рис 4):

$$|z| = r = \sqrt{a^2 + b^2} = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1;$$

$$\varphi = \pi - \arccos \left| -\frac{1}{2} \right| = \pi - \frac{\pi}{3} = \frac{2\pi}{3}.$$

Тригонометрическая форма данного комплексного числа: $z = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \ ;$

Показательная форма данного комплексного числа: $z = e^{i\frac{2\pi}{3}}$.

Вопросы и упражнения для самопроверки

- 1) Дайте определение комплексного числа.
- 2) Перечислите формы записи комплексного числа.
- 3) Как выполняются действия над комплексными числами, заданными в алгебраической форме; в тригонометрической форме; в показательной форме?
 - 4) Найдите модуль и аргумент комплексного числа $z = -2 + 2i\sqrt{3}$.
 - 5) Представьте в показательной форме комплексные числа:
 - a) $z = -\sqrt{2} i\sqrt{2}$; 6) z-5i.
- 6) Запишите комплексные числа в алгебраической и тригонометрической формах: a) $z = 15e^i \frac{3\pi}{2}$; б) $z = 4e^i \frac{7\pi}{4}$.

Задания для самостоятельной работы

Запишите комплексное число в тригонометрической и алгебраической формах:

17.
$$2e^{\frac{7\pi}{6}}$$

18.
$$4e^{\frac{2\pi}{3}}$$

19.
$$2e^{\frac{3\pi}{4}}$$

20. 3,2e^{$$\frac{4\pi}{3}$$}

21. 1,6e
$$\frac{5\pi}{4}$$

22.
$$6e^{\frac{7\pi}{4}}$$

23.
$$8e^{\frac{6\pi}{3}}$$

25.
$$4e^{\frac{11\pi}{6}}$$