Лабораторная работа № 4

Tema: «Решение задач по составлению линейных алгоритмов». Составление алгоритмов с вспомогательными алгоритмами (процедурами).

Цель: изучение реализации линейных программ на языке Pascal, а также изучение простых программ вычисления функций при различных значениях аргументов; получение практических навыков работы с ЭВМ.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Линейный (последовательный) алгоритм — описание действий, которые выполняются однократно в заданном порядке.

Пример: алгоритм решение задачи (от записи данных до ответа), алгоритм открывания двери (вставить ключ, повернуть ключ, открыть дверь) и т. д.

Разветвляющий алгоритм – алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

Условие – выражение, находящееся между словом «если» и словом «то» и принимающее значение «истина» или «ложь».

Пример: алгоритм нахождения функции не определенной на всей числовой прямой (находим значение у по заданному значению х, еслих определена в этой точке), алгоритм покупки билетов (спрашиваем в кассе, есть ли билеты, если билеты есть, то подаем деньги, получаем билеты) и т. д.

Циклический алгоритм — описание действий, которые должны повторяться указанное число раз или пока не выполнено заданное условие.

Перечень повторяющихся действий называется телом цикла.

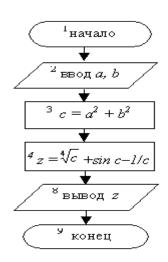
Пример:алгоритм нахождения значений у при заданных или задающихся значениях х для построения графика функции (находятся

значения на определенном интервале с заданным шагом), алгоритм покраски забора (макнуть кисть в краску, покрасить доску, шаг влево, ...).

Вспомогательный алгоритм – алгоритм, который можно использовать в других алгоритмах, указав только его имя.

Вспомогательному алгоритму должно быть присвоено имя.

Стандартные графические объекты блок-схемы представлены в таблице 1.


Таблица 1 – Стандартные графические объекты блок-схемы линейного алгоритма

Вид стандартного графического объекта	Назначение	
	Начало алгоритма	
	Конец алгоритма	
	Выполняемое действие (расчет по формуле)	
	Ввод данных	
	Вывод данных	
	Условие выполнения действия	
	Вспомогательный алгоритм	
← ↑ ↓	Последовательность выполнения действий	

Пример алгоритма и программы линейной структуры

Даны переменные а иb. Найти $Z = \sqrt[4]{a^2 + b^2} + sin(a^2 + b^2) - \frac{1}{a^2 + b^2}$ При составлении алгоритма необходимо выделить однотипные

выражения (здесь a^2+b^2), которые достаточно посчитать один раз, а затем использовать результат вычислений. Желательно разбить сложные вычисления одного выражения на более простые (например, отдельно вычислить числитель и знаменатель дроби) для того, чтобы в алгоритме не было громоздких формул. На рисунке 1 представлен вариант блок-схемы алгоритма и программа.


```
Program Primer1;
Vara,b,c,z:real;
Begin
Write ('Введите а и b');
Read (a, b);
C := sqr(a) + sqr(b);
z := sqrt (sqrt(c)) + sin(c) - 1/c;
Write('Z=', z:10:3)
End.
```

Рисунок 1 – Блок-схема алгоритма и программа линейной структуры

Вычисление значения Z производится в следующей последовательности:

- а) в блоке 2 вводятся исходные данные значения aub;
- б) в блоке 3 вычисляется арифметическое выражение a^2+b^2 , и результат запоминается в переменнойc;
- в) в блоках 4-6 вычисляются первое слагаемое, числитель и знаменатель второго слагаемого;
 - Γ) в блоке 7 производится окончательный расчетZ;
 - д) в блоке 8 выводятся исходные данные и результат.

В программе действия блоков 3-7 записываются операторами присваивания, блоки 2 и 8 реализуются операторами ввода/вывода. Ввод осуществляется с запросом, поэтому сначала записан оператор *Write*, а

затем*Read*.Вывод осуществляется форматным способом. Все переменные, участвующие в программе, объявляются в разделе*Var*ее описательной части.

Задание к лабораторной работе:

- 1. Изучите теоретическую часть к лабораторной работе;
- 2. Составьте программу для вычисления функции b=f(x,y,z), где $z=\phi(x,y)$. Вид функции и входные данные, приведенные в таблицы 2. Ввести программу в ЭВМ, вычислить значения функции. Сделать выводы.
 - 3. Подготовьте отчет, который содержит:
 - название работы, постановку цели, вывод;
 - блок-схему, текст программы и результаты ее выполнения;
 - ответы на контрольные вопросы, указанные преподавателем.

Таблица 2 – Исходные данные, для лабораторной работы

№ вариант	f(x,y,z)	$\varphi(x,y)$	x	y
1	$e^{/x-y/}(tg^2z)^x$	$\sqrt{\sin^2/x/+y}$	-4,52	0,75
2	$\frac{\sqrt{x}\sin(\pi x)}{x+e^x y}z$	$\frac{2xy}{x + cosy}$	2,87	0,84
3	$ \sin x - 2tg^2(\frac{z}{xy})$	$\sqrt{x} \cdot \sin y$	0,42	-0,87
4	$ln(\sqrt{x} + \sqrt{y} + 2) \cdot z^3$	$\sqrt{x+2y} \cdot \sin(x^2)$	5,34	3,85
5	$(arccosx)^2 + x+y ^3$	$\sqrt{x^2 + \sin y}$	-2,75	-1,42
6	$\frac{y-z/(y-x)}{\cos x + (y-x)^2}$	$\frac{\sqrt{15y}}{y + ctgx}$	1,82	18,25
7	$\ln(\sqrt{e^{x-y}}) + z^2$	$15/(x+e^y)$	1,54	-3,26
8	$x^{y/x} - \sqrt[3]{ yz }$	$ln(\sqrt[4]{x^3+y})$	1,82	18,23
9	$y^x + \sqrt[3]{ x + y } \cdot e^z$	$\frac{\sqrt{20x/x}}{x^2 + y^3}$	-0,85	1,25
10	$y + \frac{x \cdot arctgz}{y + x^2}$	$\frac{\sqrt{x}\sin^2 y}{x+e^y}$	0,12	-8,75
11	$\frac{z^2}{y+x^3} + \arcsin(y/5)$	$\frac{\pi x}{\cos^2 y + \pi}$	1,58	3,42

		T		1
12	$\ln(y^{\sqrt{ x }})(z^2 - \frac{y}{\sin x})$ $\sqrt{ z (\sqrt[3]{x} + x^{y+2})}$	$\frac{\sin(x/y)}{2x^2}$	-15,24	4,67
13	$\sqrt{ z (\sqrt[3]{x}+x^{y+2})}$	$\frac{arctg(5x)}{e^{x+y}}$	6,55	-2,78
14	$e^{z-1} + arcsin(y^2/x)$	$\cos^2 x + \sin^3 y$	0,84	0,65
15	$\sqrt{ y/e^{-(x+y)}} - \cos(z^3)$	$\frac{x+6y}{\sin x + \ln y}$	1,12	0,87
16	$\frac{4y^2e^{2sinx}}{8z^3 + ln/x/}$	$\frac{x + y\sqrt{x}}{x + 10}$	0,27	4,38
17	$\frac{\sqrt{y \ln x} - z x^2}{1 + t g^2(x^2)}$	$\frac{e^x \sqrt{x^3 + y}}{x - I}$	6,35	7,32
18	$\sqrt{e^{(x-1/\sin x)}\sqrt{/y/}}$	$2\sin(\pi x+y)$	3,91	-0,51
19	$\frac{\ln(y+\sqrt{y+x^2})}{(z+x^2)e^{x/2}}$	$\frac{2x\sqrt{y}}{\sin(x^2)}$	0,42	1,23
20	$\frac{x^3 + y}{\sin^2 z + x/5}$	$\frac{\cos^2 \pi (2+x)}{4-y^2 \sqrt{x}}$	4,32	-0,54
21	$\frac{1+\cos^2(x+z)}{/x^3-2\ln\sqrt{y}/}$	$\frac{x^2 + y^2}{e^{x+y}}$	0,83	2,38
22	$\frac{\ln x }{\sqrt[3]{ x + y }+tg(z/x)}$	$\frac{1}{x^2 + y}$	-0,93	-0,25
23	$2^{-x}\sqrt{y+\sqrt[4]{ z }}$	$\frac{x+5y}{\sqrt{x}+ln y }$	3,25	4,12
24	$\frac{z^3}{x+y^3/(x+z^2)}$	$\frac{ y+8x }{\sin x + tg \ y}$	-0,72	-1,42
25	$\frac{x+y(x^2+\cos x)}{y(x-z)+\ln xz }$	$\frac{xy}{x^2+5} + \cos^2 y$	3,98	-1,63

Контрольные вопросы:

- 1. Что такое алгоритм? Каким свойствам он должен удовлетворять?
- 2. Какие Вы знаете способы записи алгоритмов? Приведите примеры.
- 3. Классификация языков программирования.
- 4. Назовите типы данных в языке Паскаль.
- 5. Приведите примеры стандартных функций языка Паскаль.
- 6. Классификация операторов языка Паскаль. Приведите примеры операторов присваивания.