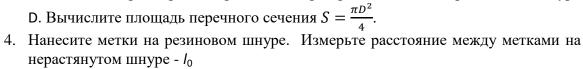
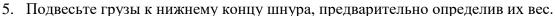
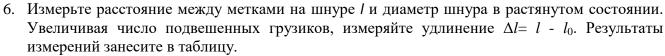
ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ РЕЗИНЫ


Цель работы: экспериментально проверить закон Гука и определить модуль упругости резины. Оборудование: резиновая полоска длиной 20-30 см с проволочной петелькой на одном конце, динамометр, линейка с миллиметровыми делениями, штангенциркуль или микрометр, штатив с муфтой и лапкой, грузики.


Короткие теоретические сведения


Если к концу однородного стержня постоянного сечения приложить направленные вдоль его осы силы f, действие которых есть равномерно распределенной по всему сечению S, то длина стержня получит увеличение Δl . За величину, которая характеризует деформацию стержня, принятое относительное изменение его длины $\frac{\Delta l}{l}$. Закон Гука утверждает, что во время упругой деформации стержня его относительное удлинение есть пропорциональным силе, которая приходится на единицу площади поперечного сечения стержня, т.е. его относительное удлинение: $\frac{\Delta l}{l} = \frac{f}{FS}$. Модуль Юнга характеризует упругие свойства материала: $E = \frac{f l_0}{S\Delta l}$.

Порядок выполнения работы

- 1. Посмотрите видео: https://www.youtube.com/watch?v=8fDnQO_spa4
- 2. Все показания определяем по видео и заносим в таблицу
- 3. С помощь микрометра, измеряем диаметр перечного сечения резинового шнура

7. Вычислите модуль Юнга резины, относительную и абсолютную погрешности измерения модуля Юнга: $E = \frac{fl_0}{S(l-l_0)} E_{cp.}$, ΔE , $\Delta E_{cp.}$, $\varepsilon = \frac{\Delta E_{cp}}{E} \cdot 100\%$.

No	<i>l</i> _{0,} м	<i>l</i> , м	Δ <i>l</i> ,	<i>т</i> , кг	f, H	D, м	S, m ²	$E, \frac{H}{M^2}$	$E_{cp}, \frac{H}{M^2}$	$\Delta E, \frac{H}{M^2}$	$\Delta E_{cp}, \frac{H}{M^2}$	$\mathcal{E},\%$
1												
2												
3												
4												
5												

- 8. Постройте, пользуясь таблицей, график зависимости Δl от f ($\Delta l = a f$).
- 9. На прямолинейному участке графика вычислите а и, пользуясь формулой закона Гука $\Delta l = \frac{f l_0}{FS}$ найдите E: $E = \frac{l_0}{aS}$ и сравните с $E_{cp.}$
- 10. Сделайте выводы.
- 11. По вопросам можно обращаться по телефону 072-1098278 или hvastov@rambler.ru
- 12. Выполненную лабораторную работу (можно выполнять на этом бланке) прислать на hvastov@rambler.ru

Стр.

Контрольные вопросы

- 1. В чем заключается физическое содержание модуля упругости E?
- 2. Зависит ли модуль упругости от геометрических размеров резиновой полоски?
- 3. Почему при графическом определении E предлагают использовать прямолинейный участок?
- 4. Какие деформации называются упругими?

Вывод:

					7-5
					Лабораторная работа № 2
Сод.	Груп.	Ф.И.О.	Подпись	Дата	