Уважаемые студенты.

Вам необходимо выучить материал лекции, рассмотреть решение примеров, ответить на контрольные вопросы.

По вопросам обращаться 072-1098278 или hvastov@rambler.ru Фотоотчёт конспекта прислать в течении 3 дней со дня получения задания на hvastov@rambler.ru

Лекция

Тригонометрические уравнения и неравенства.

План.

- 1.Определения тригонометрических и простейших тригонометрических уравнений.
- 2. Формулы общих и частных решений простейших тригонометрических уравнений.
- 3. Примеры применения простейших тригонометрических уравнений.
- 4. Определение тригонометрического неравенства.
- 5. Формулы решений простейших тригонометрических неравенств.
- **1. Тригонометричесие уравнения** это уравнения, в которых неизвестная величина находится под знаком тригонометрической функции.

Простейшие тригонометрические уравнения – это уравнения вида **sin** x=a, cos x=a, tg x=a, ctg x=a.

2. Решение простейших тригонометрических уравнений.

Уравнение	Формулы решения	Частные случаи	
$\sin x = a$	$x = 4$ тап, $n \in z$ при $ a \le 1$ при $ a > 1$ - решений нет	$\sin x = 0; \qquad x = \pi n, \ n \in \mathbb{Z}$	
		$\sin x = 1; \qquad x = \frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}$	
		$\sin x = -1, \qquad x = -\frac{\pi}{2} + 2\pi n,$	
		$n \in \mathcal{Z}$	
$\cos x = a$	$x = \pm \arccos a + 2\pi n$, $n \in \mathbb{Z}$ при $ a \le 1$	$\cos x = 0; \qquad x = \frac{\pi}{2} + 2\pi n,$	

	при $ a > 1$ - решений нет	$n \in \mathcal{Z}$
		$\cos x = 1; \qquad x = 2\pi n, n \in \mathbb{Z}$
		$\cos x = -1; x = \pi + 2\pi n, \ n \in \mathbb{Z}$
		$tgx = 0 x = \pi n, n \in z$
tgx = a	$x = arctga + \pi n$, $n \in \mathbb{Z}$ $a - \text{любое число}$	$tgx = 1 x = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$
	и - любое число	$tgx = -1 \qquad x = -\frac{\pi}{4} + \pi n \qquad n \in \mathbb{Z}$
ctgx = a		$ctgx = 0 x = \frac{\pi}{2} + \pi n n \in \mathbb{Z}$
	$x = arcctga + \pi n$, $n \in \mathbb{Z}$ a - любое число	$ctgx = 1 x = \frac{\pi}{4} + \pi n n \in \mathbb{Z}$
		$ctgx = -1 \qquad x = \frac{3\pi}{4} + \pi n n \in \mathbb{Z}$

1) Решить уравнение $\sin x = \frac{1}{2}$.

$$x = (-1)^k \arcsin\left(\frac{1}{2}\right) + \pi k, \ k \in \mathbb{Z} \implies x = (-1)^k \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}$$

OTBET:
$$x = (-1)^k \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}$$

2) Решить уравнение $\cos x = \frac{1}{2}$.

$$x = \pm \arccos \frac{1}{2} + 2\pi k, \ k \in \mathbb{Z} \implies x = \pm \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}$$

OTBET:
$$x = \pm \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}$$

3) Решить уравнение $tgx = \sqrt{3}$.

$$x = arctg\sqrt{3} + \pi k, \ k \in Z \implies x = \frac{\pi}{3} + \pi k, \ k \in Z$$

ОТВЕТ:
$$x = \frac{\pi}{3} + \pi k, \ k \in \mathbb{Z}$$

4) Решить уравнение $ctgx = \sqrt{3}$.

$$x = arcctg \sqrt{3} + \pi k, \ k \in Z \Rightarrow x = \frac{\pi}{6} + \pi k, \ k \in Z$$

OTBET:
$$x = \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}$$
.

5.
$$sin_3x=1$$

$$3x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

$$x = \frac{\pi}{6} + \frac{2\pi k}{3}, k \in \mathbb{Z}$$

Otbet:
$$x = \frac{\pi}{6} + \frac{2\pi k}{3}, k \in \mathbb{Z}$$

$$6. \left(\frac{\pi}{3} - 2x\right) = 0$$

$$\frac{\pi}{3} - 2 \; x \! = \! \frac{\pi}{2} + \pi \; k \; , \! k \! \in \! \mathbb{Z}$$

$$-2\,x\!=\!-\frac{\pi}{3}+\!\frac{\pi}{2}\,+\pi\,\,k\,,\!k\!\in\!\mathbb{Z}$$

$$-2x = \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$$

$$x = -\frac{\pi}{12} + \frac{\pi k}{2}, k \in \mathbb{Z}$$

Other:
$$x = -\frac{\pi}{12} + \frac{\pi k}{2}, k \in \mathbb{Z}$$

Примеры применения простейших тригонометрических уравнений.

Пример 1. Решить уравнение $\cos^2 x + \cos x - 2 = 0$.

Решение. Это уравнение является квадратным относительно $\cos x$. Поэтому сделаем замену $\cos x = t$. В результате получим уравнение $t^2 + t - 2 = 0$. Его корни: $t_1 = 1$, $t_2 = -2$, то есть получаем уравнение $\cos x = 1$ или $\cos x = -2$. Первое уравнение дает $x = 2\pi k$, $k \in Z$. Второе уравнение не имеет корней.

OTBET: $x = 2\pi k$, $k \in \mathbb{Z}$.

Пример 2. Решить уравнение $6\cos^2 x + 5\sin x - 7 = 0$.

Решение. Так как $\cos^2 x = 1 - \sin^2 x$, то уравнение можно представить в виде $6(1-\sin^2 x) + 5\sin x - 7 = 0$; $6\sin^2 x - 5\sin x + 1 = 0$. Сделаем замену $t = \sin x$. Получим квадратное уравнение $6t^2 - 5t + 1 = 0$, решая которое, имеем: $D = 25 - 6 \cdot 4 = 1$, $t_{1,2} = \frac{5 \pm 1}{12}$, то есть $t_1 = \frac{1}{2}$, $t_2 = \frac{1}{3}$. Таким образом, получим $\sin x = \frac{1}{2}$ или $\sin x = \frac{1}{3}$. Решая их, имеем $x = (-1)^k \frac{\pi}{6} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$, $x \in Z$ или $x = (-1)^k \arcsin \frac{1}{3} + \pi k$

OTBET:
$$(-1)^k \frac{\pi}{6} + \pi k$$
; $(-1)^k \arcsin \frac{1}{3} + \pi k$, $k \in \mathbb{Z}$

Пример 1. Решить уравнение:

$$3\sin^2 x - 2\sin x \cos x - \cos^2 x = 0$$

Решение. Это уравнение является однородным относительно $\sin x$ и $\cos x$. Поэтому, разделив его на $\cos^2 x$ $(\cos x \neq 0)$, получим $3tg^2x - 2tgx - 1 = 0$. Введем новую переменную tgx = t и решим квадратное уравнение $3t^2 - 2t - 1 = 0$.

Его корни $t_1=1,\ t_2=-\frac{1}{3}$. Получили два простейших тригонометрических $tgx=1,\ tgx=-\frac{1}{3}$. Решая их, найдем: $x=\frac{\pi}{4}+\pi k,\ k\in Z$ или $x=-arctg\,\frac{1}{3}+\pi k,\ k\in Z$

OTBET:
$$\frac{\pi}{4} + \pi k$$
, $-arctg \frac{1}{3} + \pi k$, $k \in \mathbb{Z}$

Пример 2. Решить уравнение:

$$6\sin^2 x + \sin x \cos x - \cos^2 x = 2.$$

Решение. Это уравнение, сводящееся к однородному. Имеем

$$6\sin^2 x + \sin x \cos x - \cos^2 x = 2(\sin^2 x + \cos^2 x),$$

$$4\sin^2 x + \sin x \cos x - 3\cos^2 x = 0,$$

то есть получили однородное уравнение. Разделив обе части уравнения на $\cos^2 x \ (\cos x \neq 0)$, получим $4tg^2x + tgx - 3 = 0$. Решая это уравнение, квадратное относительно tgx, найдем, что tgx = -1 либо $tgx = \frac{3}{4}$. Таким образом, $x = \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}$ или $x = arctg \frac{3}{4} + \pi k, \ k \in \mathbb{Z}$

Other:
$$\frac{\pi}{4} + \pi k$$
, $\operatorname{arctg} \frac{3}{4} + \pi k$, $k \in \mathbb{Z}$

Решите уравнение $5\sin^2 x - 8\sin x \cos x - \cos^2 x = -2$.

Решение: Перепишем уравнение в виде

 $7\sin^2 x - 8\sin x \cos x + \cos^2 x = 0.$

Получили уравнение, однородное относительно sinx и cosx.

Рассмотрим два случая:

- $\cos x = 0$, тогда $7\sin^2 0 + 0^2 = 0$, откуда $\sin x = 0$, что невозможно, поскольку $\sin^2 x + \cos^2 x = 1$; в этом случае корней нет.
- $\cos x \neq 0$, тогда разделим обе части уравнения на $\cos^2 x$: $7 t g^2 x 8 t g x + 1 = 0$.

Пусть y=tgx. Получим: $7y^2$ -8y +1=0, находим y_1 , y_2 и делаем обратную замену.

Простейшие тригонометрические неравенства – это неравенства вида

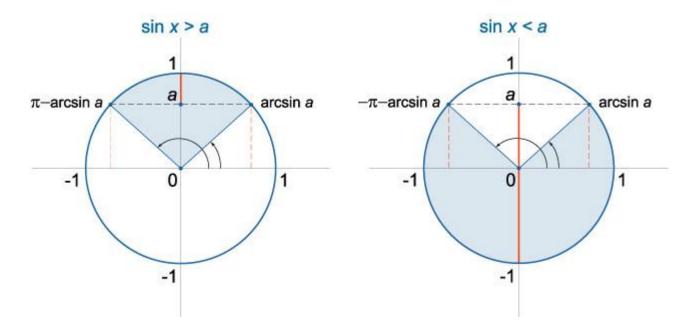
 $\sin x > a$, $\sin x < a$, $\cos x > a$, $\cos x < a$, $\tan x > a$, $\tan x < a$.

 $\sin x < \alpha$

а	M	
$-1 < \alpha \le 1$	$-\pi$ - arcsin α + $2\pi k$ < x < arcsin α + $2\pi k$,	$k \in \mathbb{Z}$
a > 1	R	
$a \le -1$	Ø	

а	M	
$-1 \le \alpha < 1$	$\arcsin \alpha + 2\pi k < x < \pi - \arcsin \alpha + 2\pi k$,	$k \in \mathbb{Z}$
a < -1	R	
$a \ge 1$	Ø	

 $\sin x > a$.

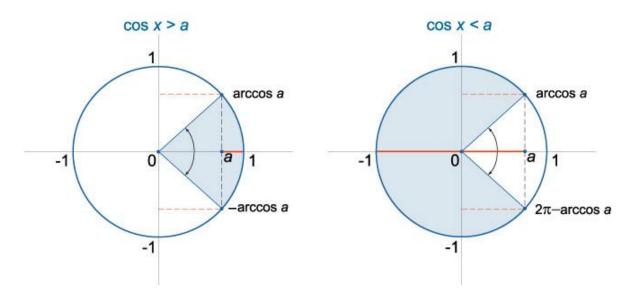


 $\cos x < a$.

а	M	
$-1 < \alpha \le 1$	$\arccos \alpha + 2\pi k < x < 2\pi - \arccos \alpha + 2\pi k$	$k \in \mathbb{Z}$
$\alpha > 1$	R	
$a \le -1$	Ø	

 $\cos x > a$.

а	M	
$-1 \le a < 1$	$-\arccos \alpha + 2\pi k < x < \arccos \alpha + 2\pi k$	$k \in \mathbb{Z}$
a < -1	R	
$a \ge 1$	Ø	



 $tgx < a \implies -\pi/2 + \pi k < x < arctga + \pi k, k \in \mathbb{Z}$.

 $tgx > a \implies arctga + \pi k < x < \pi/2 + \pi k, k \in Z.$

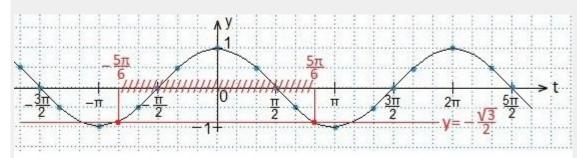
 $ctgx < a \implies arcctga + \pi k < x < \pi + \pi k, k \in Z.$

Пример 1.

Решение. 1) $\cos 3x > -\frac{\sqrt{3}}{2}$. Пусть 3x = t. Имеем: $\cos t > -\frac{\sqrt{3}}{2}$.

Строим графики функций: y=cost и y= $-\frac{\sqrt{3}}{2}$,

учитывая, что: $-\frac{\sqrt{3}}{2} = \cos(\pi - \frac{\pi}{6}) = \cos\frac{5\pi}{6}$.



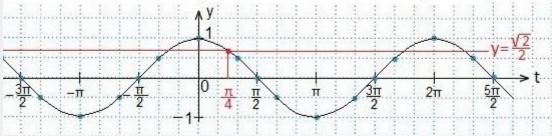
$$\begin{split} -\frac{5\pi}{6} + 2\pi n < t < \frac{5\pi}{6} + 2\pi n, & \text{ n} \in \mathbb{Z}; \\ -\frac{5\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n, & \text{ n} \in \mathbb{Z}; \\ -\frac{5\pi}{18} + \frac{2}{3}\pi n < x < \frac{5\pi}{18} + \frac{2}{3}\pi n, & \text{ n} \in \mathbb{Z}; \end{split}$$

OTBET: $\left(-\frac{5\pi}{18} + \frac{2}{3}\pi n; \frac{5\pi}{18} + \frac{2}{3}\pi n\right)$, neZ.

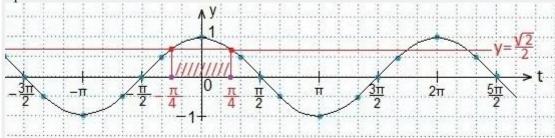
Пример 2.

Решение. 2) $\cos(\frac{x}{2} + \frac{\pi}{4}) \ge \frac{\sqrt{2}}{2}$. Замена: $\frac{x}{2} + \frac{\pi}{4} = t$. Тогда $\cos t \ge \frac{\sqrt{2}}{2}$.

Строим: y=cost и y= $\frac{\sqrt{2}}{2}$. Имеем ввиду, что: $\frac{\sqrt{2}}{2} = \cos \frac{\pi}{4}$



Выделяем промежуток значений ${f t}$, при которых синусоида находится выше прямой.



$$\begin{array}{l} -\frac{\pi}{4} + 2\pi n \leq t \leq \frac{\pi}{4} + 2\pi n, \; n \in \mathbb{Z}; \\ \\ -\frac{\pi}{4} + 2\pi n \leq \frac{x}{2} + \frac{\pi}{4} \leq \frac{\pi}{4} + 2\pi n, \; n \in \mathbb{Z}; \\ \\ -\frac{\pi}{4} - \frac{\pi}{4} + 2\pi n \leq \frac{x}{2} \leq \frac{\pi}{4} - \frac{\pi}{4} + 2\pi n, \; n \in \mathbb{Z}; \\ \\ -\frac{\pi}{2} + 2\pi n \leq \frac{x}{2} \leq 2\pi n, \; n \in \mathbb{Z}; \\ \\ -\pi + 4\pi n \leq x \leq 4\pi n, \; n \in \mathbb{Z}; \\ \\ \text{Otbet: } [-\pi + 4\pi n; \; 4\pi n], \; n \in \mathbb{Z}. \end{array}$$

Контрольные вопросы.

- 1. Какое уравнение называется тригонометрическим?
- 2. Дайте определения простейших тригонометрических уравнений.
- 3. Назовите формулы общих решений тригонометрических уравнений вида $\sin x=a$, $\cos x=a$, tg x=a, ctg x=a.
- 4. Дать определение простейших тригонометрических неравенств.
- 5. Запишите формулы решений неравенств $\sin x > a$, $\sin x < a$.
- 6. Запишите формулы решений неравенств $\cos x > a$, $\cos x < a$.