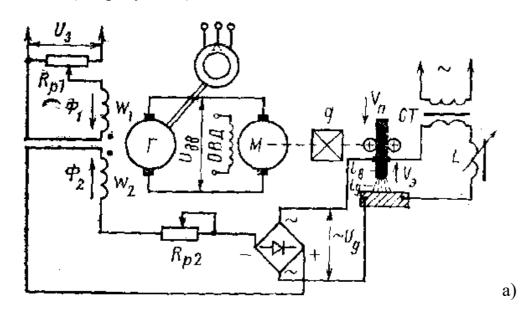
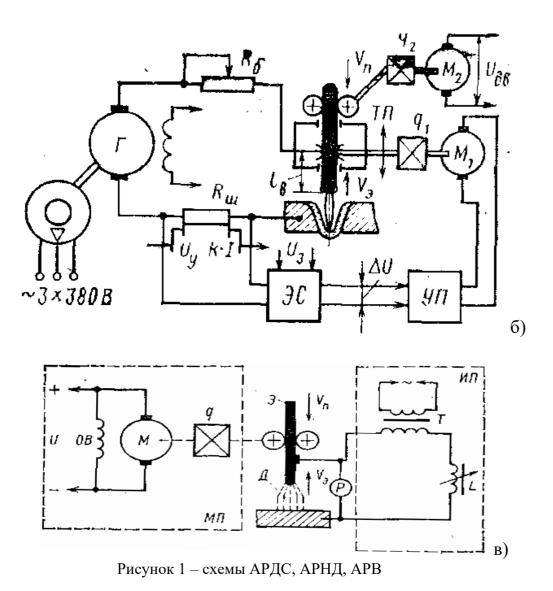
Памятка

Уважаемые студенты, вам необходимо прочитать данную практическую, выполнить все требования письменно в рабочей тетради. Выполненную работу - прислать фото отчет на электронную почту преподавателя, (с 16.02.2023 по 17.02.2023). В дальнейшем по окончанию семестра принести для проверки.

С уважением Андрощук Ольга Владимировна, если какие вопросы по заданию, обращаться по номеру тел. +380721273299 или по электронной почте e-mail: Olga8122@yandex.ru


Практическая работа №17


Тема: Системы автоматической стабилизации тока и напряжения

Цель: Ознакомиться с видами и принципами работы систем автоматической стабилизации сварочных процессов

Задание:

1. Изобразить функциональные схемы АРДС, АРНД, АРВ. Пояснить назначение и принцип работы систем автоматической стабилизации (см. рисунок 1)

2. Ответить на контрольные вопросы

САУ параметров дуги при сварке неплавящимся электродом

На практике используют два способа регулирования параметров дуги с неплавящимся электродом при действии возмущений в сварочном контуре: с помощью САР напряжения и длины дуги (системы типа АРНД) и с помощью автоматических регуляторов параметров питающей системы (регуляторы типа АРП).

АРНД представляет собой замкнутые САУ с воздействием на пространственное положение электрода относительно поверхности изделия. Принцип построения АРНД основан на использовании функциональной зависимости $U_{\text{д}} = f(\ell_{\text{д}})$ при небольших отклонениях длины дуги: $\ell_{\text{д}} = (U_{\text{д}} - U_{\text{K+a}})/k_{\text{д}}$.

Функциональная схема системы АРНД (см. рисунок 2.) состоит из сварочного контура «источник питания – дуга – сварочная ванна» и внешнего регулятора.

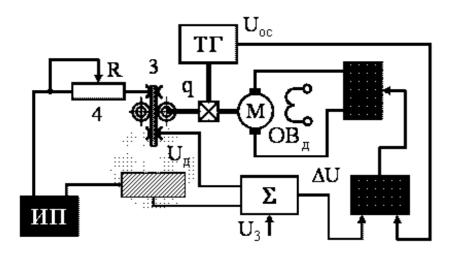


Рисунок 2 — Функциональная схема АРНД при дуговой сварке неплавящимся электродом

состав регулятора напряжения ДУГИ входят: суммирующее устройство Σ ; усилитель по напряжению 1 и мощности 2; исполнительное устройство – двигатель М и редуктор 3; тахогенератор ТГ. В суммирующем устройстве системы управления текущее напряжение дуги U_{π} сравнивается с заданным (установкой) U_3 , и разность этих напряжений $DU_{\pi} = U_3$ – U_{π} усиливается в блоках 1 и 2 по напряжению и мощности. Усиленный по мощности сигнал питает исполнительный двигатель М, который через редуктор 3 обеспечивает вертикальное перемещение сварочной горелки 4 до устранения рассогласования между U_{π} и U_{3} , т.е. до $DU_{\pi} \to 0$. Для лучшего демпфирования системы при обработке различных возмущений по длине используется скоростная ОС, которая реализована дуги в ней тахогенераторе ТГ.

В промышленности внедрены АРНД непрерывного и дискретного действия. Точность стабилизации напряжения дуги у систем непрерывного типа выше, чем у систем релейного типа. Она составляет 0,1-0,15 В при дуги 8-24 В. Релейные АРНД конструктивно напряжении непрерывных, однако применение в них релейных усилителей усложняет динамический расчет регулятора. Для расчета используются точные и приближенные методы исследования динамических характеристик замкнутых систем регулирования.

Системы автоматического регулирования вылета электрода

При сварке плавящимся электродом системы АРНД и АРДС не отрабатывают возмущений по вылету электрода. В то же время при автоматической сварке на повышенных плотностях тока вылет электрода является одним из важнейших параметров режима, поскольку от его величины зависят энергетические характеристики, стабильность и характер переноса электродного металла. Чаще всего возмущения по вылету электрода являются причиной нарушения установленных параметров режима при непрерывной многопроходной сварке, сварке кольцевых швов,

расположенных в вертикальной плоскости и имеющих радиальные биения вследствие неточности подготовки и сборки изделий.

Основное влияние вылета на энергетические характеристики сварочного контура состоит в том, что изменение вылета сопровождается таким перераспределением выделяемой тепловой мощности между активным пятном на электроде и его вылетом, что сумма их остается примерно постоянной. С увеличением вылета электрода ток дуги уменьшается, что приводит к уменьшению глубины проплавления и доли основного и электродного металла в сварном соединении.

Функциональная схема системы автоматического регулирования вылета (APB) показана на рисунке 6,а.

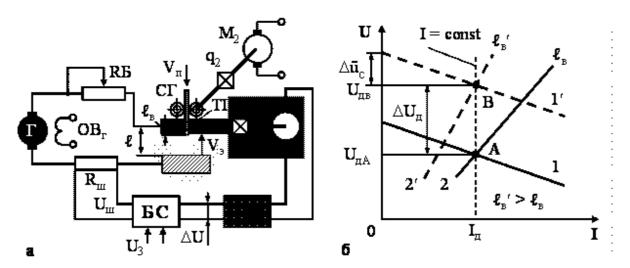


Рисунок 3. Система APB: а – функциональная схема; б – принцип стабилизации тока в системе при возмущении по вылету электрода

Сигнал, пропорциональный току дуги $U_{\rm m}$, снимается с шунта $R_{\rm m}$ и сравнивается в блоке сравнения БС с напряжением установки U_3 . Разность $\Delta U = (U_{\rm m} - U_3)$ усиливается по напряжению и мощности усилителемпреобразователем УП и поступает на двигатель M_1 . Последний через редуктор q_1 , изменяет положение токоподводящего узла ТП (вылет $\ell_{\rm B}$) до тех пор, пока при действующих возмущениях напряжения $U_{\rm m} = kI$, пропорциональное току дуги, не сравняется с напряжением установки U_3), с помощью которой задается рабочий ток дуги. Для перемещения электродной проволоки со скоростью $V_{\rm m}$ служит двигатель M_2 с редуктором q_2 .

Для расчета систем APB необходимо знать зависимость падения напряжения на вылете электрода, которое зависит от величины проходящего по нему тока, его длины и химического состава.

В работе показано, что относительно возмущения $\Delta \tilde{\ell}_{\rm B}$ система APB обладает астатическим законом регулирования из-за астатизма передаточной функции в приводе регулятора, так как ошибки по $\Delta \tilde{u}$ и $\Delta \tilde{i}$ равны нулю.

Принцип стабилизации тока в системе APB при возмущении по напряжению сети $\Delta \tilde{u}_c$ показан на рисунке 3,б.

Установившийся режим работы определяется пересечением внешней характеристикой источника питания 1 и кривой устойчивой работы системы APДC-2. Статические ошибки в системе APB по напряжению дуги $\Delta U_{\rm д}$ при ступенчатом изменении вылета электрода $\Delta \tilde{\ell}_{\rm B}$ не равно нулю, а статическая ошибка по току $\Delta I=0$, так как этот параметр в системе APB регулируется по астатическому закону

При сварке плавящимися электродами в среде защитных газов, когда применяются источники питания с внешними характеристиками, близкими к жестким, возмущения по вылету в первую очередь влияют на ток дуги, а статические ошибки по напряжению стремятся к нулю.

Контрольные вопросы

- 1. В чем заключается системы автоматической стабилизации тока и напряжения?
- 2. САУ параметров дуги при сварке неплавящимся электродом?
- 3. Какой режим сварки осуществляется с помощью САР ЭЛС?