УВАЖАЕМЫЕ СТУДЕНТЫ!

ВАМ НЕОБХОДИМО ВЫПОЛНИТЬ СЛЕДУЮЩЕЕ:

- 1. Ознакомиться с теорией, составить и ответить на вопросы.
- 2. Выполнить задание
- 3. Предоставит отчет конспекта лекции прислать в виде скриншото в течении трех дней .
- 4. Отправить преподавателю на почту <u>v.vika2014@mail.ru</u> и указать свою Ф.И.О, группу, и название дисциплины тел 072-17-44-9-22

Лабораторная работа № 6

Тема: «Решение задач по составлению циклических алгоритмов»

Цель: научиться описывать циклических алгоритмы на языке Pascal. Освоить применение условного оператора в языке Pascal. Освоить применение оператора выбора в языке Pascal.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Цикл- это процесс выполнения определенного набора команд многократное количество раз. Если вычислительный процесс содержит многократные вычисления ПО одним И тем же математическими различных значений зависимостями, НО ДЛЯ начальных величин (переменных), его называют циклическим. Величины, которые изменяются в цикле называют переменными цикла.

Алгоритм циклической структуры в общем виде должен содержать:

1) подготовку цикла: задания начальных значений переменных цикла перед первым его выполнением;

- 2) тело цикла: действия, повторяющиеся в цикле для различных значений переменных цикла;
- 3) модификацию: изменение значений переменных цикла перед каждым новым его повторением;
- 4) управление циклом: проверка условий продолжения (или окончания) цикла и переход к началу тела цикла, если выполняется условие продолжения цикла (или выход из цикла после его окончания).

Циклы разделяют на циклы с заданным количеством повторений и циклы с заранее неизвестным количеством повторений. Реализуют циклы или с помощью конструкции if-goto, или значительно эффективнее, с помощью команд цикла. Есть три вида команд, с помощью которых можно запрограммировать повторяющиеся фрагменты программы: с параметром, с предусловием и с постусловием.

Команда цикла с параметром (for). Циклы с заданным количеством повторений называют также циклами со счетчиком. Число повторений тела цикла в этом случае считается с помощью специальной переменной (счетчика), для которой известны начальные и конечные (пороговые) значения, а также шаг изменения. Управление циклом выполняется посредством сравнения текущих значений счетчика с заданным порогом. Переменную счетчика часто называют параметром цикла, а сам цикл - циклом с параметром.

Оператор цикла с параметром (for) имеет два вида. Рассмотрим первый: for<параметр> = <выражение 1>to<выражение 2>do<оператор 1>;

Здесь for (для), to (до), do (выполнить) — зарезервированы (служебные) слова; параметр - это переменная целого, символьного, логического или перечисленного типа, кроме действительного, а выражения 1 и 2 — это некоторые константы такого же типа, что и параметр цикла которые задают начальное и конечное значение параметра.

Блок-схема цикла с параметром имеет вид:

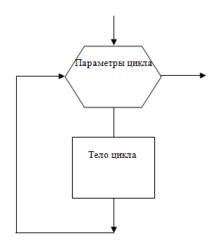


Рисунок 1 – Блок-схема циклического алгоритма

Пример. Пусть s = 0 После выполнения команды цикла

for i = 4 to 6 do begin s := s + i; z = 2 * i end;

переменная s примет значение 0 + 4 + 5 + 6 = 15, a переменная z = 12.

Замечания. Значение параметра в середине цикла изменять нельзя.

Рассмотрим второй вид команды цикла for:

for<параметр> = <выражение 1>downto<выражение 2>do<оператор 1>;

Эта команда действует как предыдущая, но значение параметра уменьшается на 1 (downto - вниз к).

Пример. Пусть s = 0 После выполнения команды цикла

for i = 6 do downto 4 begin $s := s + \mu z = 2 * i$ end;

переменная s примет значение 0+6+5+4=15, a переменная z=8.

Команда цикла с предусловием (while). В большинстве задач циклы приходится выполнять неизвестное количество раз. Эта ситуация возникает, если вычисление значения функции заканчивается в случаях, когда необходимо достигнуть заданной точности, или когда выполнение оператора зависит от вводимой пользователем информации, или когда в массиве необходимо найти элемент с конкретным значением и тому подобное. В этих случаях определенную последовательность действий необходимо выполнять несколько раз, причем необходимое число повторений во время разработки программы неизвестно и может быть определен только во время работы программы, то есть в процессе вычисления задачи.

Оператор цикла с предусловием –while (пока) предназначен для организации многократного исполнения группы указаний (тело цикла) до тех пор, пока остается истинной условие выполнения цикла.

Оператор цикла с предусловием имеет вид:

while<логическое выражение>do

begin

<Указание 1>;

<Указание 2>;

......

<Указание N>

end;

Здесь while (пока), do (выполнить) - зарезервированные слова; логическое выражение - условие, которое определяет выполнение цикла.

Действие команды. Вычисляется значение логического выражения (условия). Если условие истинно (принимает значение true), то выполняется группа указаний (тело цикла). Выполнение программы снова возвращается к проверке условия цикла. Если условие ложь (принимает значение false), то выполняется указание, которая находится после оператору повторения с предусловием.

Блок-схема оператора цикла с предусловием имеет вид:

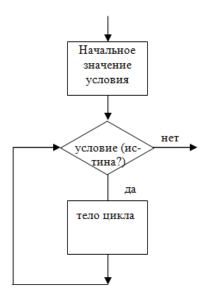


Рисунок 2 – Блок-схема циклического алгоритма

Примечание:

- 1. Если условие ложь при первой же проверке, то тело цикла не выполняется ни разу. Условие оператора является условием вхождения в пикл.
- 2. Условие оператора повторения с предусловием необходимо подбирать таким образом, чтобы в некоторый момент оно изменила свое значение true на false, иначе возникнет ситуация «зацикливания» программы.
- 3. Программисту необходимо самому позаботиться о необходимости увеличения (уменьшения) счетчика цикла на 1.Это можно сделать следующим образом I = I + 1.
- 4. Вхождение в тело оператора повторения возможно только через заголовок этого оператора.

Оператор цикла с постусловием (repeat-until). Оператор цикла с постусловием предназначен для организации многократного исполнения группы указаний (тело цикла) до тех пор, пока условие выполнения цикла не станет истинной (логическое выражение совпадает не false, a true).

Оператор цикла с постусловием имеет вид:

repeat

<Указание 1>;

<Указание 2>;

·····;

<Указание N>

until<логическое выражение>;

Здесь repeat (повторять), until (до тех пор пока) - зарезервированные слова; логическое выражение - условие, которое определяет завершения шикла.

Проверка условия осуществляется не в начале цикла, а в конце (что гарантирует, как минимум, единовременное выполнение тела цикла).

Действие команды. Сначала выполняются указания, которые входят в тела цикла. Затем вычисляется значение условия-выражения. Если условие заблуждение (т.е. имеет значение false), то снова выполняются указания тела цикла. Если условие становится истинным (true), то выполнение цикла прекращается и выполняется следующая указание программы.

Примечание.

- 1. Тело цикла, состоящее из группы указаний, не нужно брать в скобки (begin end), поскольку служебные слова repeat until играют роль скобок.
- 2. Тело цикла в операторе цикла с постусловием выполняется минимум один раз.
 - 3. Условие в операторе является условием выхода из цикла. Блок-схема оператора цикла с постусловием имеет вид:

Рисунок 3 – Блок-схема циклического алгоритма с постусловием

Задание к лабораторной работе:

- 1. Изучить теоретические сведения к лабораторной работе.
- 2. В соответствии с вариантом составить блок-схему алгоритма и программу для вычисления значения выражения для z своего варианта $\frac{1}{12} \left(\frac{1}{12} \right) = \frac{1}{12} \left(\frac{1}$

(табл.1), если
$$a = \sum_{x=i}^{i+8} f_i(x)$$
, $b = \prod_{x=i}^{i+5} f_{i+1}(x)$

где і - номер варианта, х - целое число.

Выражения функций fi (x) и fi + 1 (x) определить в табл. 2.Ввести программу в ЭВМ, вычислить значение, вывести и, а, b, z. Сделать выводы.

- 3. Подготовьте отчет, который содержит:
- название работы, постановку цели, вывод;
- блок-схему, текст программы и результаты ее выполнения;
- ответы на контрольные вопросы, указанные преподавателем.

	Таблица 1			
№ вариант	Значение			
1	z = a + b			
2	z = ab			
3	z = tg(b) - a			
4	$z = (a+b)^2$			
5	z = 5ab - 4			
6	$z = \sin(a) + b$			
7	z = btg(a)			
8	$z = a^2 + 3b$			
9	$z = (a+b)^{\frac{1}{4}}$			
10	$z = ab - \pi$			
11	z = a - 2b			
12	z = atgb			
13	$z = \cos(a+b)$			
14	z = a - b			
15	z = ctg(2a) - b			
16	$z = e^{3ab}$			
17	z = 4ab - b			
18	z = 2a - b			

Таблица 2

	Таолица 2				
№ вариант	$oldsymbol{\Phi}$ ункция $f_i(x)$				
1	$\sqrt[3]{\left x+\sin x^2\right }-2$				
2	$\ln x + e^{\sqrt{ X-1 }}$				
3	$x^2 - 4\cos x^2$				
4	$\sqrt[3]{ 2x + \sqrt{ tgx }}$				
5	$2\pi + tgx^2$				
6	$(x+2x^2)\cdot \left \cos x^2\right $				
7	$3x^2 + 2\cos x$				
8	$\sqrt{x+2x^2} \cdot \sin x$				
9	$\sqrt[3]{\left x+\sin x^2\right }$				
10	$\sqrt{x^2+x^3}\cdot tgx$				
11	tg^4x-x^2				
12	$\sqrt{x} + \sqrt[3]{ x }$				
13	$x^3 + 2x \cdot e^x$				
14	$\sqrt{x^3 - x} + \sin x^2$				
15	$3x + \cos^4 x$				
16	$tgx^3 \cdot \sin x$				
17	$x^3 - \sqrt{x} + \log_2 x$				
18	$\left \sin x^3\right + x \cdot e^x$				

19	$z = 12a - \cos(b) $			
20	$z = a - b^2$			
21	z = tg(a+b)			
22	$z = \ln a + 4b $			
23	$z = 3ab - \cos b$			
24	$z = 4a + e^b$			
25	z = 5a - 2b			

19	$tgx^3 - \sqrt[3]{x^2 - 3}$			
20	$e^{\sqrt{ x-1 }} \cdot \ln x$			
21	$\pi \cdot \lg x - 5$			
22	$1.8 \cdot \sqrt[3]{ \sin x } + e^{\sqrt{ x-1 }}$			
23	$\sqrt[3]{ \sin x } + \ln x$			
24	$\sin x^2 + tgx$			
25	$x^3 + \cos^4 x$			

Контрольные вопросы:

- 1. Что такое цикл? Приведите примеры.
- 2. Какой процесс называется циклическим?
- 3. Что такое переменная цикла. Приведите примеры.
- 4. Из каких составных образуется алгоритм циклической структуры?
- 5. Приведите пример циклического вычислительного процесса с параметром.
- 6. Что произойдет при использовании служебного слова to в цикле, если исходное выражение будет больше конечный?
 - 7. Приведите примеры использования оператора while.
 - 8. В чем разница между операторами while и repeat?
 - 9. Напишите оператор с постусловием.