УВАЖАЕМЫЕ СТУДЕНТЫ! Изучите теоретические сведения к лабораторной работе, выполните практическое задание, дайте ответы на контрольные вопросы.

Результаты работы, фотоотчет, предоставить преподавателю на e-mail: <u>r.bigangel@gmail.com</u> <u>до 20.03.2023.</u>

Требования к отчету:

Отчет предоставляется преподавателю в электронном варианте и должен содержать:

- название работы, постановку цели, вывод;

- ответы на контрольные вопросы, указанные преподавателем.

При возникновении вопросов по приведенному материалу обращаться по следующему номеру телефона: (072)111-37-59, (Viber, WhatsApp), vk.com: https://vk.com/daykini

ВНИМАНИЕ!!! При отправке работы, не забывайте указывать ФИО студента, наименование дисциплины, дата проведения занятия (по расписанию).

Лабораторная работа №6

Предоставление операционной системой информации о процессах, происходящих в системе.

Цель работы: Познакомиться с реестром Windows 7. Изучить

основные средства наблюдения за распределением виртуальной памяти в OC Windows 7.

Краткие теоретические сведения

Физическая память представляет собой упорядоченное множество ячеек и все они пронумерованы, то есть с каждой из них можно обратиться, указав ее порядковый номер (адрес). Количество ячеек физической памяти ограничено и фиксировано.

Виртуальная память создает иллюзию того, что каждый процесс имеет доступ к 4Гб непрерывного адресного пространства. Виртуальное адресное пространство процесса является набором адресов, доступным всем нитям этого процесса.

Windows 7 распределяет адресное пространство физической и виртуальной памяти страницами (pages) – блоками по 4Кб.

Страницы виртуальной памяти имеют три состояния:

1. Большинство страниц пусто, поскольку процесс их не использует;

2. Используемые страницы отображаются с помощью невидимого для процесса указателя в область физической оперативной памяти (ОЗУ);

3. Некоторые страницы, к которым не было обращений в течение определенного времени, отображаются с помощью невидимого для процесса указателя в 4Кб раздел файла подкачки (pagefile.sys).

Процесс управления местоположением страниц – в ОЗУ или в страничном файле называется **подкачкой страниц по запросу**.

Реестр - это унифицированная база данных, в которой Windows 7/2003 хранит всю информацию о конфигурации оборудовании и программного обеспечения локального компьютера. Реестр управляет ОС Windows 7/2003, предоставляя информацию, используемую при запуске приложений и загрузке компонентов, например драйверов устройств и сетевых протоколов.

Реестр содержит следующую информацию о:

• оборудовании, установленном на компьютере, включая центральный процессор, тип шины, указательное устройство или мышь и клавиатуру;

• установленных драйверах устройств; установленных приложениях;

• установленных сетевых протоколах;

• настройках платы сетевого адаптера (номер прерывания, базовый адрес памяти, базовый адрес портов ввода-вывода, тип трансивера);

• учетных записях пользователей (например, о принадлежности пользователей группам, их правах доступа и привилегиях).

Разделяют логическую и физическую структуру реестра. Логическая структура реестра отображена в редакторе реестра regedit.exe и состоит из ветвей, ключей и т.д. Физическая структура отражает порядок, в котором файлы реестра (кусты) хранятся на жестком диске. Всю необходимую информацию можно получить в Центре Справки и Поддержки OC Windows 7.

Задание 1. Работа с реестром Windows 7, получение информации о настройках диспетчера памяти.

Запустите VMWare Player, выберите образ ОС 7. Путь к образу ОС задайте согласно указаниям преподавателя.

1. Создайте ярлык для Редактора реестра. Щелкните правой кнопкой в любом месте рабочего стола. Щелкните Создать, а затем — Ярлык. В поле Укажите размещение объекта введите regedit.exe. Щелкните кнопки Далее, а затем — Готово. На рабочем столе появится значок ярлыка для программы regedit.exe.

2. Познакомьтесь со структурой реестра.

Чтобы просмотреть реестр, запустите **Редактор реестра**, дважды щелкнув его ярлык.

Составьте список пяти ветвей реестра.

Как и большинство компонентов Windows XP, диспетчер памяти старается автоматически оптимизировать работу систем различных масштабов и конфигураций при разных уровнях загруженности. Стандартные настройки изменить через параметры можно В разделе реестра HKLM\SYSTEM\CurrentControl-Set\Control\Session Manager\Memory Management. Часть этих параметров перечислена в табл. 2.

Таблица 2

Параметр	Описание
ClearPageFileAtShutdown	Указывает, надо ли заполнять нулями неактивные страницы в страничном файле при завершении работы системы. Включение этого параметра обеспечивает дополнительную
	защиту
	Продолжение табл. 2
Параметр	Описание

DisablePagingExecutive	Определяет, можно ли выгружать системный код и драйверы устройств в страничный файл на то время, когда они не используются. Если этот параметр равен 0 (по умолчанию), драйверы и системный код должны оставаться в физической памяти. Если же он равен 1, драйверы и системный код можно при необходимости выгружать в страничный файл
	задает максимальное число байт, олокируемых в пользовательском процессе для операций ввода-вывода. Если этот параметр равен 0, система использует лимит по умолчанию (512 Кб). Предельно возможное значение примерно равно объему физической памяти за вычетом 7 Мб
LargePageMinimum	Определяет минимальный объем памяти (в Мб) для проецирования Ntoskrnl и HAL с использованием больших страниц (по 4 Мб). Этот параметр не документирован и по умолчанию отсутствует, его нужно добавлять вручную
LargeSystemCache	Определяет, чему будет отдан приоритет при нехватке памяти — кэшу файловой системы или рабочим наборам процессов. Также влияет на размер кэша файловой системы. (B Windows XP Server этот параметр можно задать косвенно, через свойства службы файлового сервера)
NonPagedPoolQuota	Указывает максимальный объем неподкачиваемой памяти (в Мб), который можно выделять какому-либо процессу. Если этот параметр равен 0, данное значение определяется самой системой
NonPagedPoolSize	Задает начальный размер пула неподкачиваемой памяти (в байтах). Если этот параметр равен 0, данное значение определяется самой системой
PagedPoolQuota	Указывает максимальный объем подкачиваемой памяти (в Мб), который можно выделять какому-либо процессу. Если этот параметр равен 0, данное значение определяется самой системой
PagedPoolSize	Устанавливает начальный размер пула подкачиваемой памяти (в байтах). Если этот параметр равен 0, данное значение определяется самой системой. А если он равен -1, выбирается максимально возможный размер

Окончание табл. 2

Параметр	Описание
SystemPages	Определяет число элементов в системной таблице страниц,
	зарезервированных для проецирования на системное
	адресное пространство буферов ввода-вывода, драйверов
	устройств, стеков потоков ядра и страниц, используемых
	для программного ввода-вывода. Если этот параметр равен
	0, данное значение выбирается самой системой

ВНИМАНИЕ! Не изменяйте значения этих параметров реестра.

Как показывают результаты тестирования, автоматически

вычисляемые значения обеспечивают оптимальное быстродействие. Их модификация может привести к непредсказуемым последствиям вплоть до зависания и даже краха.

3. С помощью Редактора реестра и Панели управления произведите настройку и мониторинг файла подкачки Windows 7.

• Нажмите Пуск | Настройка | Панель управления.

• Дважды щелкните на значке Система, затем Дополнительные параметры системы, на вкладке Дополнительно, в окне настроек Быстродействие нажмите кнопку Параметры, перейдите на вкладку Дополнительно

• В окне Виртуальная память изучите текущие настройки файла подкачки. Запишите значение общего объема файлов подкачки на всех дисках в рабочую тетрадь.

• Уберите галочку Автоматически выбирать объем файла подкачки. Выберите Указать размер. Установите размер файла подкачки на диске С: в соответствии с указаниями преподавателя.

• Откройте раздел реестра HKLM\SYSTEM\CurrentControlSet\Control\ \Session Manager\Memory Management и, исследуя значения параметров этого раздела, найдите место расположения, название, размер файла подкачки. Обратите внимание на имена, типы и значения параметров в правом окне. *Запишите значения в рабочую тетрадь*.

• Верните первоначальные настройки виртуальной памяти.

• Проверьте текущий размер файла подкачки на диске, используя **Проводник** и запишите его размер в рабочую тетрадь.

Дополнительно: изучите системные параметры, которые возможно изменять с помощью значка панели управления Система.

Задание 2. Просмотр информации о виртуальной памяти в Диспетчере задач.

Базовую информацию о системной памяти можно получить на вкладке Быстродействие в Диспетчере задач, как показано на рис. Эти сведения являются подмножеством информации о памяти, предоставляемой счетчиками производительности.

1. Запустите Диспетчер задач.

2. Нажмите Выполнить | Обзор. Укажите путь к программе *cpustres.exe*. (*K:\LAB1\cpustres.exe*)

3. Внимательно изучив расшифровку параметров физической памяти в табл.3, составьте таблицу всех параметров Вашей системы в рабочей тетради.

Таблица 3

Парамотр	Описание
Параметр	Описание
Физическая память: всего	Истинный объем физической памяти на
	машине
Физическая память: доступно	Объем физической памяти доступной для
	выделения процессам
Физическая память: системный кэш	Системный рабочий набор (включает кэш,
	пул подкачиваемой памяти и системный код)
Память ядра: всего	Системный рабочий набор (включает кэш,
	пул подкачиваемой памяти и системный код)
Память ядра: выгружаемая	Сумма следующих двух значений
Память ядра: невыгружаемая	Размер пула неподкачиваемой памяти

📮 Диспетчер задач Windows 📃 🔲 🗙
<u>Ф</u> айл <u>П</u> араметры <u>В</u> ид <u>С</u> правка
Приложения Процессы Быстродействие
Загрузка ЦП Хронология загрузки ЦП
Память — Хронология использования памяти
Всего — Физическая память (КБ) — —
Дескрипторов 6307 Всего 506604 Потоков 293 Доступно 304612 Процессов 37 Системный кзш 322752
- Вылеление рамоти (КБ)
Bcero 158156 Bcero 43052
Предел 1182044 Выгружаемая 35024
Пик 167804 Невыгружаемая 8028
Процессов: 37 – Загрузка ЦП: 4% – Память: 158156К / 1182044К – 刘

рисунок

Задание Наблюдение за использованием памяти с помощью утилиты Performance Monitor (Производительность).

Объекты счетчиков производительности **Память** и **Процесс** открывают доступ к большей части сведений об использовании памяти системой и процессами. Для получения информации о счетчике поставьте галочку Отображать описание.

1. Запустите программу CPU Stress с двумя активными нитями.

- 2. Запустите | Системный монитор (c:\windows\system32\perfmon.exe).
- 3. Удалите счетчики по умолчанию.
- 4. Добавьте счетчики:

Объект Память счетчик: Байт выделенной виртуальной памяти.

Объект Память счетчик: Предел выделенной виртуальной памяти.

Объект Память | счетчик: Процент использования выделенной памяти.

5. Пронаблюдайте использование памяти процессом CPU Stress с помощью следующих счетчиков:

Объект Процесс | счетчик: Байт виртуальной памяти| вхождения: cpustress

Объект Процесс | счетчик: Байт исключительного пользования | вхождения: cpustress

Объект Процесс | счетчик: Байт файла подкачки | вхождения: cpustress

Запишите в рабочую тетрадь средние значения этих счетчиков и их интерпретацию (то, что они означают).

Контрольные вопросы

1. Что такое реестр? Перечислите пять ветвей реестра и их основное содержание.

2. Опишите иерархическую структуру реестра, расположение файлов реестра на диске.

3. Какие средства изменения информации в реестре Вы знаете? Перечислите типы данных параметров реестра.

4. Что представляет собой физическая память, и как вы понимаете понятие Виртуальная память? Что такое страница? Что называют рабочим набором?

5. Какие две главные задачи решают механизмы управления памятью? В каком файле содержится диспетчер памяти?

6. Какие два типа динамических пулов памяти создает диспетчер памяти при инициализации системы, для чего они используются?