Залание:

- Повторить теорию;
- Разобрать примеры решения;
- Построить графики для функций из предыдущей лекции;
- По вопросам обращаться 072-1098278 или hvastov@rambler.ru
- Фотоотчёт прислать в течении 3 дней со дня получения задания на hvastov@rambler.ru

Лекция

Тема: Применение производной к исследованию функций. Общая схема исследования функции. Построение графиков.

Цель: Научиться строить графики функций

План.

- 1. Применение производной к исследованию функций.
- 2. Промежутки монотонности функции (промежутки возрастания и убывания).
 - 3. Необходимый признак возрастания (убывания) функции.
 - 4. Правило нахождения интервалов монотонности функции f(x).
 - 5. Точки минимума.
 - 6. Точки максимума.
 - 7. Точки экстремума функции.
 - 8. План исследования функции и построения ее графика

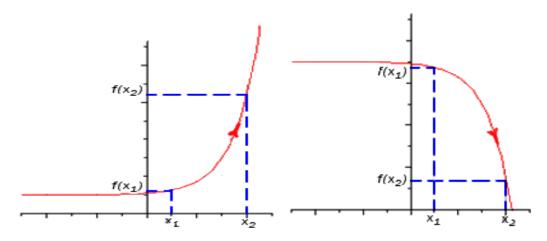
Понятие производной — одно из важнейших в математике. С помощью производной учитывая её механический смысл и геометрический смысл, можно решать самые разнообразные задачи, относящиеся к любой области человеческой деятельности. В частности, с помощью производных стало возможным подробное исследование функций, что позволило очень точно строить их графики, находить их наибольшие и наименьшие значения и т. д.

Одной из основных задач, возникающих при исследовании функции, является нахождение промежутков монотонности функции (промежутков возрастания и убывания).

Такой анализ легко сделать с помощью производной.

Но прежде чем приступить к исследованию функций на монотонность вспомним, какие функции называются возрастающими (убывающими).

Функция y=f(x) называется возрастающей в некотором интервале, если в точках этого интервала большему значению аргумента соответствует большее значение функции, и убывающей, если большему значению аргумента соответствует меньшее значение функции.

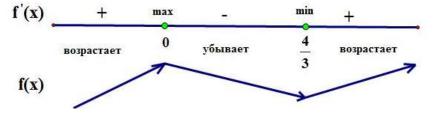


Необходимый признак возрастания (убывания) функции.

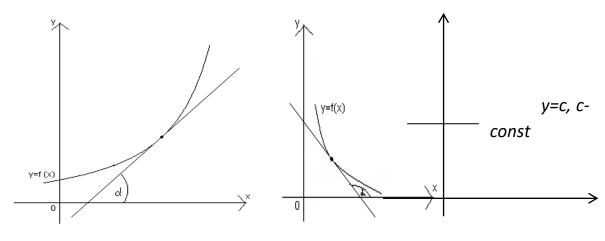
Теорема 1. Если дифференцируемая функция y=f(x) возрастает (убывает) в данном интервале, то производная этой функции не отрицательна (не положительна) в этом интервале.

Обратное заключение также справедливо, оно выражается следующей теоремой.

Теорема 2. Если производная функции y=f(x) отрицательна (положительна) на некотором интервале, то функция в этом интервале монотонно возрастает (монотонно убывает).



Таким образом



функция возрастает,

функция убывает,

функция постоянна

 α -острый угол (I четв.), α -тупой угол (II четв.), α =0,

 $tg\alpha > 0$, $tg\alpha < 0$, $tg\alpha = 0$,

f'(x) > 0. f'(x) < 0. f'(x) = 0.

Сформулируем правило нахождения интервалов монотонности функции f(x).

- 1. Находим область определения функции f(x).
- 2. Вычисляем производную f'(x) данной функции.
- 3. Находим точки, в которых f'(x)=0 или не существует. Эти точки называются критическими для функции f(x).
- 4. Делим область определения функции этими точками на интервалы. Они являются интервалами монотонности.
- 5. Исследуем знак f'(x) на каждом интервале. Если f'(x)>0, то на этом интервале f(x) возрастает; если f'(x)<0, то на таком интервале функция f(x) убывает.

Пример №1. Найти промежутки монотонности функции y=2x³-3x²-36x+5.

- 1. Область определения: R. Функция непрерывна.
- 2. Вычисляем производную : $y'=6x^2-6x-36$.
- 3. Находим критические точки: у'=0.

$$x^2-x-6=0$$

$$D=1-4\cdot(-6)\cdot 1=1+24=25x_1=-2, x_2=3$$

4. Делим область определения на интервалы:

5. Функция возрастает при $x \in (-\infty; -2] \cup [3; +\infty)$, функция убывает при $x \in [-2; 3]$.

Пример №2. Найти промежутки монотонности функции $y=x^3-3x^2$.

- 1. Область определения: R. Функция непрерывна.
- 2. Вычисляем производную : $y'=3x^2-6x$.
- 3. Находим критические точки: у'=0.

$$x^2 - 2x = 0$$

$$x(x-2)=0$$

$$x_1=0$$
 и $x_2=2$

4. Делим область определения на интервалы:

5. Функция возрастает при $x \in (-\infty; 0] \cup [2; +\infty)$, функция убывает при $x \in [0; 2]$.

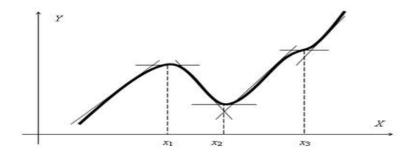
Но помимо монотонности функций с помощью первой производной можно ещё определить экстремумы функций (точки максимума/минимума).

Сначала введём необходимые определения и понятия.

Опр. 1. Точку $x=x_0$ называют точкой минимума функции y=f(x), если у этой точки существует окрестность, для всех точек которой выполняется неравенство $f(x) \ge f(x_0)$.

Опр. 2. Точку $x=x_0$ называют точкой максимума функции y=f(x), если у этой точки существует окрестность, для всех точек которой выполняется неравенство $f(x) \le f(x_0)$.

Теорема 3. Если функция y=f(x) имеет экстремум в точке $x=x_0$, то в этой точке производная функции или равна нулю, или не существует.



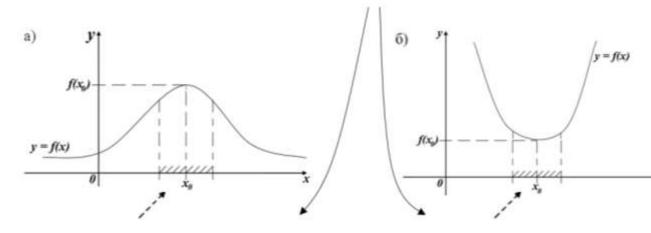
Рассмотрим ещё достаточный признак существования экстремумов функции.

Теорема 4. Если производная f'(x) при переходе через точку x_0 меняет знак, то точка x_0 является точкой экстремума функции f(x).

Если производная меняет знак с + на -, то точка будет являться точкой максимума,

если с - на +, то точка будет точкой минимума.

Точка экстремума



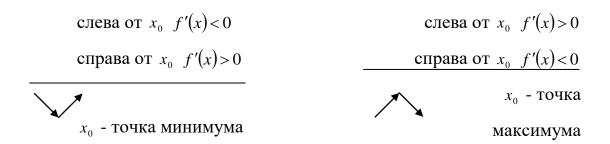
Точка максимума

для всех x, $f(x) \ge f(x_0)$

Точка минимума для всех x, $f(x) \le f(x_0)$

Теорема.

1. f'(x) = 0, x_0 - критическая точка



Рассмотрим теперь на примерах исследование функции на экстремумы. Пример №3. Найти экстремумы функции y=-2x³-3x²+12x-4.

- 1. Область определения: R. Функция непрерывна.
- 2. Вычисляем производную : $y'=-6x^2 6x + 12$.
- 3. Находим критические точки: у'=0.

$$x^2 + x - 2 = 0$$

$$D=1-4\cdot 1\cdot (-2)=1+8=9$$

$$x_1$$
=-2 и x_2 =1

4. Делим область определения на интервалы:

- 5. Функция возрастает при $x \in (-\infty; 0] \cup [2; +\infty)$, функция убывает при $x \in [0; 2]$.
- 6. Видно, что в точке x=-2 знак производной меняется с минуса на плюс. Поэтому критическая точка x=-2 точка минимума. Найдём минимум функции $y_{min}=-24$. В точке x=1 знак меняется с плюса на минус. Поэтому критическая точка x=1 точка максимума. Найдём максимум функции: $y_{max}=3$.

Таким образом

Применение			۸ -						
производной		Алгоритм							
I.	Нахождение		1.	Вычислит	f'(x)	данн	ой	фуні	кции
интервалов	монотонности	f(x).							
функции $y = f(x)$			2.	Найти	критиче	еские	точ	чки,	для

	этого решить уравнение $f'(x) = 0$.					
	3. Критическими точками разбить					
	область определения на интервалы.					
	4. На каждом из интервалов					
	определяем знак производной. Для этого					
	берем произвольное число из					
	рассматриваемого интервала и подставляем в					
	производную функции. По знаку ответа					
	определяем знак производной.					
	5. По знаку производной делаем					
	вывод о возрастании, убывании функции.					
I. Исследование	1. Найти производную функции					
функции на экстремум	f'(x).					
	2. Решить уравнение $f'(x) = 0$ и					
	найти критические точки.					
	3. Критическими точками разбить					
	область определения на интервалы.					
	4. Исследовать знак производной в					
	некоторой окрестности каждой критической					
	точки.					
	5. а) если при переходе через т. x_0					
	производная меняет знак с «+» на «-», x_0 -					
	точка максимума;					
	б) если при переходе через т. x_0					
	производная меняет знак с «-» на «+», то т. x_0					
	- точка минимума.					

План исследования функции и построения ее графика.

1. Область определения.

- 2. Производная.
- 3. Критические точки.
- 4. Знаки производной, промежутки монотонности.
- 5. Экстремумы функции
- 6. График.

Контрольные вопросы:

- 1. Дайте определение возрастающей (убывающей) функции.
- 2. Назовите теоремы о возрастании (убывании) функции.
- 3. Что называется точкой минимума (максимума) функции.
- 4. Что называется критической точкой.
- 5. Достаточные условия экстремума функции.
- 6. Алгоритм исследования функции на монотонность и экстремумы.
- 7. Алгоритм исследования функции.

На прошлой лекции вы находили интервалы возрастания и убывания функции, теперь постройте графикифункций:

1.
$$y = x^2 - 4x + 4$$
. $\left[\oint \pi p_{\mathbf{H}} x \in (-\infty; 2); \uparrow \pi p_{\mathbf{H}} x \in (2; +\infty) \right]$

2.
$$y = 6 - 3x^2 - x^3$$
. $\left[\downarrow_{\text{при } x \in (-\infty; -2) \cup (0; +\infty)}; \uparrow_{\text{при } x \in (-2; 0)} \right]$

3.
$$y = x^4 - 2x^2$$
. $\left[\downarrow_{\Pi p u \, x \in (-\infty; -1) \cup (0; 1); \uparrow_{\Pi p u \, x \in (-1; 0) \cup (1; +\infty)} \right]$

4.
$$y = x^3 - 3x + 4$$
.