Задание

- 1. Ознакомиться с учебным материалом лекции, записать свойства операций над множествами, записать пример решения типовой задачи.
 - 2. Найти в сети Интернет доказательство свойств операций над множествами с помощью кругов Эйлера законспектировать в тетрадь.
 - 3. Фотоотчет присылать на электронную почту

С уважением, Хвастова Светлана Ивановна

!!! Если возникнут вопросы обращаться по телефону 0721389311 (ватсап). Электронная почта: xvsviv@rambler.ru

Лекция на тему: «Свойства операций над множествами»

План

- 1. Свойства операций над множествами.
- 2. Доказательство ассоциативности объединения множеств.
- 3. Пример решения типовой задачи

Операции над множествами обладают и рядом свойств, аналогичных свойствам сложения и умножения чисел.

1) переместительные законы пересечения и объединения (коммутативность):

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$

2) сочетательные законы пересечения и объединения (ассоциативность):

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 $(A \cup B) \cup C = A \cup (B \cup C)$

3)
$$A \cap A = A$$
 $A \cup A = A$

4)
$$A \cap \emptyset = \emptyset$$
 $A \cup \emptyset = A$

5)
$$A \cap U = A$$
 $A \cup U =$

6) распределительные законы (дистрибутивность):

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \qquad (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

7) законы включения:

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
 $(A \cap B) (A \cap C) \subseteq A \cap (B \cup C)$

Вычитание и дополнение также обладает рядом свойств.

$$8) A' \cap A = \emptyset \qquad A' \cup A = U$$

9)
$$(A \cap B)' = A' \cup B'$$
 $(A \cup B)' = A' \cap B'$

10)
$$\varnothing' = U$$
 $U' = \varnothing$

11)
$$(A \ B) \ C = A \ (B \cup C)$$
 $(A \ B) \ C = (A \ C) \ B$

12)
$$(AB) \cup B = A \cup B$$
 $(AB) \cap C = (A \cap B)(B \cap C)$

13)
$$A(B \cup C) = (AB) \cap (AC)$$
 $A(B \cap C) = (AB) \cup (AC)$

Данные свойства можно проиллюстрировать на кругах Эйлера в соответствии с порядком

Рассмотрим более строгие доказательства некоторых законов.

Например, докажем ассоциативность операции объединения $(A \cup B)$ $\cup C = A \cup (B \cup C)$.

Чтобы доказать равенство двух множеств, надо убедиться, что каждый элемент множества $(A \cup B) \cup C$ содержится в множестве $A \cup (B \cup C)$, и наоборот.

1. Пусть x — любой элемент множества $(A \cup B) \cup C$. Тогда, по определению объединения, $x \in A \cup B$ или $x \in C$.

Если $x \in A \cup B$, то по определению объединения $x \in A$ или $x \in B$.

В том случае, если $x \in A$, то так же по определению объединения $x \in (A \cup B) \cup C$.

Если $x \in B$, то имеем, что $x \in B \cup C$, а значит, $x \in (A \cup B) \cup C$.

Случай, когда $x \in A$ и $x \in B$, сводится к рассмотренным. Таким образом, из того, что $x \in A \cup B$, следует, что $x \in (A \cup B) \cup C$.

Если $x \in C$, то по определению объединения, $x \in B \cup C$, и, следовательно, $x \in (A \cup B) \cup C$.

Случай, когда $x \in A \cup B$ и $x \in C$, сводится к рассмотренным выше.

Итак, мы показали, что каждый элемент множества $(A \cup B) \cup C$ содержится в множестве $A \cup (B \cup C)$, т.е. $(A \cup B) \cup C \subseteq A \cup (B \cup C)$.

Пусть y — любой элемент из множества $A \cup (B \cup C)$. Тогда по определению объединения, $y \in A, y \in B \cup C$.

Если $y \in A$, то по определению объединения, $y \in A \cup B$, и, следовательно, $y \in A \cup (B \cup C)$.

Если $y \in B \cup C$, то $y \in B$ или $y \in C$. В том случае, когда $y \in B$, то $y \in A \cup B$ и, значит, $y \in (A \cup B) \cup C$. Когда же $y \in C$, то $y \in (A \cup B) \cup C$. Случай, когда $y \in B$ и $y \in C$, сводится к уже рассмотренным.

Итак, мы показали, что каждый элемент множества $A \cup (B \cup C)$ содержится в множестве $(A \cup B) \cup C$, т.е. $A \cup (B \cup C) \subseteq (A \cup B) \cup C$.

Согласно определению равных множеств заключаем, что $(A \cup B) \cup C = A \cup (B \cup C)$.

Аналогично доказывается ассоциативность пересечения множеств и другие свойства операций над множествами.

Пример. Используя свойства операций над множествами, можно доказывать и другие равенства. Докажем, что для любых множеств A и B верно равенство $(A' \cap B)' = A \cup B'$.

Решение: Известно, что $(A \cap B)' = A' \cup B'$. Применим эту формулу к выражению $(A' \cap B)'$. Получим $(A' \cap B)' = (A')' \cup B'$. Но поскольку (A')' = A, то имеем: $(A')' \cup B' = A \cup B'$. Таким образом, $(A' \cap B)' = A \cup B'$.