Уважаемые студенты! Задание:

Порядок выполнения:

- 1. Внимательно прочитать тему и цель практической работы.
- 2. Изучить учебный материал по теме.
- 3. Ответить на вопросы.
- 4. Выполнить задания.
- 5. Подготовить отчет.
- 6. Фотоотчет работы предоставить на электронную почту hvastov@rambler.ru, при возникновении вопросов обращаться по телефону 0721098278 (WatsApp).

ПРАКТИЧЕСКАЯ РАБОТА

ТЕМА: ПРИМЕНЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА ДЛЯ ВЫЧИСЛЕНИЯ ПЛОЩАДЕЙ И ОБЪЕМОВ.

ЦЕЛЬ: Формировать умение применять комплекс знаний из темы: "Интегральное исчисление" к решению задач и систематизировать теоретические знания.

ЗАДАЧА

- 1. Вычислить площадь фигуры, ограниченной заданными линиями.
- 2. Вычислить об'м фигуры, ограниченной заданными линиями, которая образована обращениям вокруг оси Ох (Оу).

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем содержание метода интегрирования частями?
- 2. Записать формулу интегрирования частями.
- 3. Как разложить рациональную дробь на простые дроби?
- 4. В чем содержание метода неопределенных коэффициентов?
- 5. Записать тригонометрические формулы, которые применяют для упрощения тригонометрических выражений при интегрировании тригонометрических функций.
 - 6. Записать универсальную тригонометрическую подстановку.
- 7. Какие методы используют для упрощения иррациональных выражений?

Теоретические сведения

Которой бы не была криволинейная фигура, которая ограничена непрерывными кривыми линиями, путем ее рассекания линиями параллельными осям координат, вычисление площади фигуры можно свести к вычислению площадей рассмотренных ниже фигур.

1. Фигура ограничена линиями , y = f(x), y = 0, x = a, x = b (рис.1). Функция f(x) - непрерывная и $f(x) \ge 0$. Площадь S такой криволинейной трапеции за геометрическим содержанием определенного интеграла такая:

 $S = \int_{a}^{b} f(x)dx$. Если при выполнении всех других условий $f(x) \le 0$ (рис. 2), $S = \left| \int_{a}^{b} f(x)dx \right|$.

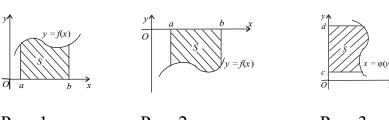


Рис. 1 Рис. 2 Рис. 3

II. Фигура ограничена линиями $x = \varphi(y), x = 0, y = c, y = d$ (рис. 3). Функция $x = \varphi(y)$ - непрерывная и $\varphi(y) \ge 0$. Площадь S такой фигуры будет $S = \int_{c}^{d} \varphi(y) dy$, а если $\varphi(y) \le 0$ (рис. 4), то $S = \left| \int_{c}^{d} \varphi(y) dy \right|$.

III. Фигура ограничена линиями y = f(x), y = g(x), x = a, x = b. Функции f(x) и g(x) - непрерывные и $f(x) \ge g(x)$ для $x \in [a;b]$ (рис.5). Площадь S такой фигуры определяется как разность площадей фигур aA_2B_1b и aA_2B_1b : $S = \int_a^b (f(x) - g(x))dx$.

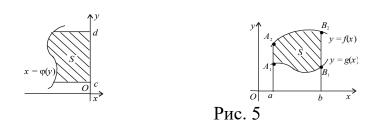
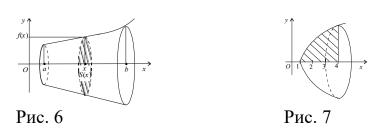


Рис. 4

IV. Объем тела V_x , образованного обращением вокруг Ox фигуры, ограниченной линиями $y=f(x)\geq 0, y=0, x=a, x=b$ (рис. 6). Рассматривая эту задачу, как частинний случай предыдущей задачи, устанавливаем, что площадь поперечного перереза S(x) в данном случае есть площадь круга радиусом y=f(x), , т.е. $S(x)=\pi\cdot (f(x))^2$, а объем тела обращения за формулой будет таким: $V_x=\int\limits_x^b S(x)dx=\pi\int\limits_x^b (f(x))^2 dx$

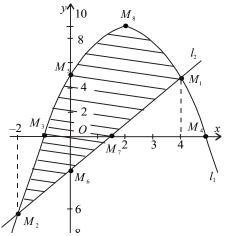


Замечание. Аналогично, объем тела V_{y} , образованного обращением вокруг

осы Оу фигуры, ограниченной линиями $x=0,\ x=\varphi(y)\geq 0,\ y=c,\ y=d$ (см. рис. 7), будет иметь вид: $V_y=\pi\int\limits_0^d (\varphi(y))^2\,dy$.

Примеры решения задач

Пример 1. Вычислить площадь фигуры, ограниченной линиями $y = -x^2 + 4x + 5$ та y = 2x - 3.



Построим фигуру, ограниченную параболой $y = -x^2 + 4x + 5$ и прямой y = 2x - 3 (l_2) на координатной плоскости; при этом находим точки сечения заданных линий между собой и с осями координат, а также координаты вершины параболы (рис. 8).

$$\begin{split} &l_{1} \cap l_{2} \Leftrightarrow \begin{cases} y = -x^{2} + 4x + 5 \\ y = 2x - 3 \end{cases} \begin{cases} y = 2x - 3 \\ x^{2} - 2x - 8 = 0 \end{cases} \begin{cases} x = 4 \\ y = 5 \\ x = -2 \end{cases} \Leftrightarrow \\ \begin{cases} M_{1}(4; 5) \\ M_{2}(-2; -7). \end{cases} \\ &l_{1} \cap Ox \Leftrightarrow \begin{cases} y = -x^{2} + 4x + 5 \\ y = 0 \end{cases} \begin{cases} y = 0 \\ x^{2} - 4x - 5 = 0 \end{cases} \begin{cases} x = 5 \\ x = -1 \Leftrightarrow M_{3}(-1; 0). \end{cases} \\ &l_{1} \cap Oy \Leftrightarrow \begin{cases} y = -x^{2} + 4x + 5 \\ x = 0 \end{cases} \begin{cases} y = 5 \\ x = 0 \end{cases} \Leftrightarrow M_{5}(0; 5). \end{split} \\ &l_{2} \cap Ox \Leftrightarrow \begin{cases} y = 0 \\ y = 2x - 3 \end{cases} \begin{cases} y = 0 \\ x = \frac{3}{2} \Leftrightarrow M_{6}(0; -3). \end{cases} \\ &l_{2} \cap Oy \Leftrightarrow \begin{cases} x = 0 \\ y = 2x - 3 \end{cases} \begin{cases} x = 0 \\ y = -3 \Leftrightarrow M_{6}(0; -3). \end{cases} \\ &l_{2} \cap Oy \Leftrightarrow \begin{cases} x = 0 \\ y = 2x - 3 \end{cases} \begin{cases} x = 0 \\ y = -3 \Leftrightarrow M_{6}(0; -3). \end{cases} \end{cases} \\ &l_{3} \cap Oy \Leftrightarrow \begin{cases} x = 0 \\ y = 2x - 3 \end{cases} \end{cases} \\ &l_{4} \cap Oy \Leftrightarrow \begin{cases} x = 0 \\ y = -3 \Leftrightarrow M_{6}(0; -3). \end{cases} \end{cases}$$

Точка $M_8(2; 9)$ - вершина параболы $y-9=-(x-2)^2$. Площадь S фигуры $M_1M_8M_2$ за формулой (7.23) будет такая:

$$S = \int_{-2}^{4} \left(-x^2 + 4x + 5 - (2x - 3) \right) dx = \int_{-2}^{4} \left(-x^2 + 2x + 8 \right) dx = \left(-\frac{x^3}{3} + x^2 + 8x \right) \Big|_{-2}^{4} = -\frac{64}{3} + 16 + 32 - \left(\frac{8}{3} + 4 - 16 \right) = 3$$

Пример 2. Вычислить объем тела, образованного обращением вокруг оси Ох фигуры, ограниченной линиями , $y^2 = 3x - 3$, x = 1, x = 4.

В прямоугольной системе координат строим фигуру, ограниченную данными линиями (рис. 7.19). За формулой (7.25) объем тела будет таким: $V = \pi \int_{1}^{4} y^{2} dx = \pi \int_{1}^{4} (3x-3) dx = \frac{3\pi}{2} (x-1)^{2} \Big|_{1}^{4} = \frac{27}{2} \pi . .$

Задачи для самостоятельного решения

1.Найти площадь фигуры ограниченной линиями

1.
$$y = -4x^2 + 6$$
; $y = x - 1$

2.
$$y=x^3$$
; $y=-x^2$

3.
$$y = \sin x$$
; $x = \frac{\pi}{2}$; $x = \frac{3\pi}{2}$

4.
$$y = tgx$$
; $x = 0$; $x = \frac{\pi}{4}$

5.
$$y = \frac{8}{x}$$
; $x = 2$; $x = 6$

6.
$$4y=8x-x^2$$
; $4y=x+6$

7.
$$y=4-x^2$$
; $y=x^2-2x$

8.
$$y = \cos x$$
; $y = 0$; $x = \frac{\pi}{2}$; $x = \pi$

9.
$$y = \frac{1}{2}x^2 - 4$$
; $y = 7x$

10.
$$y = x$$
; $x - y - 8 = 0$; $y = 0$

11.
$$y = -x$$
; $x = 2$; $y = 4$

12.
$$y = (x-2)^2; y = 4;$$

13.
$$y = -(x+1)^2 + 3$$
; $y = 0$

14.
$$y = 4x^2 - 2$$
; $y = -x$

15.
$$y = -x^3$$
; $y = x + 1$

16.
$$y = \sin x$$
; $y = 0$; $x = \frac{\pi}{3}$; $x = \frac{\pi}{4}$

17.
$$y = ctgx$$
; $x = \frac{\pi}{2}$; $x = \frac{\pi}{4}$; $y = 10$

18.
$$y = \frac{10}{x}$$
; $y = x^2$

19.
$$y = x + 4$$
; $y = -x$; $x = 0$

20.
$$y = \frac{-4}{x}$$
; $y = -x^2$; $y = 8$

21.
$$y = \cos x$$
; $y = 0$; $x = \frac{\pi}{3}$; $x = \frac{\pi}{4}$

2. Вычислить объем тела, образованного обращением вокруг оси ОХ фігуиі, ограниченной линиями. Сделать схематический рисунок.

1.
$$Y^2=x$$
; $x^2=y$;

2.
$$Y = \frac{1}{4}x^2$$
; $y = \frac{1}{8}x^3$;

3.
$$Y^2=3x-x^2$$
; $y=0$;

5.
$$Y = \frac{1}{4}$$
; $Y = 0$; $X = 1$; $X = 4$;

6.
$$2Y=X^2$$
; $2X+2Y-3=0$;

7.
$$Y=X^2+1$$
; $Y=3-X^2$;

8. Y=SIN X; y=0;
$$x \in [0; \Pi]$$

9.
$$2x-3y-2=0$$
; $x=4$; $y=0$;

11.
$$y=\sqrt[3]{x-6}$$
; x=10; y=0;

$$12.y^2 = 9x; x = 8y;$$

13.
$$y = \sqrt{x-5}$$
; $x=9$ $y=0$;

$$14.y = \frac{4}{3}x - \frac{4}{3}x^2; y = \frac{1}{3}x;$$

15.
$$y=2x-x^2$$
; $y=-x+2$;

16.
$$y = \sqrt{x-4}$$
; $x=8$; $y=0$;

18. Y=
$$x^{3}$$
; y= \sqrt{x} ;

19. y=
$$\sqrt{x-2}$$
; x=6; y=0;

20.
$$x=\sqrt[3]{y-2}$$
 $x=1$; $y=1$;