Задание

- 1. Изучить теоретический материал темы, законспектировать, подготовить 5-7 тестовых вопросов к теме.
 - 2. Фотоотчет и сообщение присылать на электронную почту
 - С уважением, Хвастов Александр Николаевич
- !!! Если возникнут вопросы обращаться по телефону 0721098278 (ватсап). Электронная почта: hvastov@rambler.ru

Лекция на тему «Определенный интеграл, его свойства и геометрический смысл. Вычисление определенного интеграла с помощью формулы Ньютона-Лейбница. Вычисление определенного интеграла методом подстановки и методом интегрирования по частям»

Содержание

- 1. Понятие определенного интеграла
- 2. Геометрический смысл определенного интеграла
- 3. Основные свойства определенного интеграла
- 4. Формула Ньютона-Лейбница
- 5. Замена переменной в определенном интеграле
- 6. Интегрирование по частям

1. Понятие определенного интеграла

Пусть функция y = f(x) определена на отрезке [a, b], a < b. Выполним следующие операции:

1) разобьем отрезок [a,b] точками $a=x_0 < x_1 < ... < x_{i-1} < x_i < ... < x_n = b$ на п частичных отрезков $[x_0,x_1],[x_1,x_2],...,[x_{i-1},x_i],...,[x_{n-1},x_n]$;

- 2) в каждом из частичных отрезков $[x_{i-1}, x_i]$, $i=1,2,\ldots,n$ выберем произвольную точку $z_i \in [x_{i-1}, x_i]$ и вычислим значение функции в этой точке: $f(z_i)$;
- 3) найдем произведения $f(z_i)\cdot \Delta x_i$, где Δx_i длина частичного отрезка $[x_{i-1},x_i],\ i=1,2,\ \dots,n$;
 - 4) составим сумму

$$\sigma = f(z_1)\Delta x_1 + f(z_2)\Delta x_2 + \dots + f(z_n)\Delta x_n = \sum_{i=1}^n f(z_i)\Delta x_i, (1)$$

которая называется **интегральной суммой функции у = f(x)** на отрезке [a, b]. С геометрической точки зрения интегральная сумма σ представляет собой сумму площадей прямоугольников, основаниями которых являются частичные отрезки $[x_0, x_1], [x_1, x_2], \dots, [x_{i-1}, x_i], \dots, [x_{n-1}, x_n]$, а высоты равны $f(z_1), f(z_2), \dots, f(z_n)$ соответственно (рис. 1). Обозначим через λ длину наибольшего частичного отрезка $\lambda = \max_{i=1}^n \Delta x_i$;

5) найдем предел интегральной суммы, когда $\lambda \to 0$.

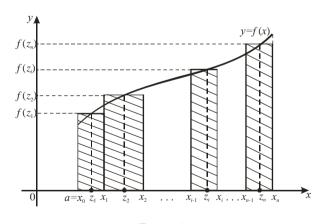


Рис. 1

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a,b] на частичные отрезки, ни от выбора точек z_i в них, то этот предел называется определенным интегралом от функции y = f(x) на отрезке [a,b] и обозначается $\int_a^b f(x) dx$.

Таким образом,
$$\int_a^b f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^n f(z_i) \Delta x_i .$$

В этом случае функция f(x) называется интегрируемой на [a,b]. Числа а и b называются соответственно нижним и верхним пределами интегрирования, f(x) — подынтегральной функцией, f(x)dx — подынтегральным выражением, x — переменной интегрирования; отрезок [a,b] называется промежутком интегрирования.

Теорема 1. Если функция y = f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

2. Геометрический смысл определенного интеграла

Пусть на отрезке [a, b] задана непрерывная неотрицательная функция y = f(x). Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу — осью Ох, слева и справа — прямыми x = a и x = b (рис. 2).

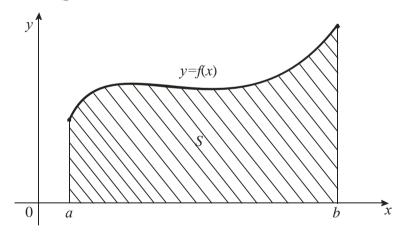


Рис. 2

Определенный интеграл $\int_a^b f(x)dx$ от неотрицательной функции y=f(x) с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x), слева и справа – отрезками прямых x=a и x=b, снизу – отрезком [a,b] оси Ох.

3. Основные свойства определенного интеграла

- **1.** Значение определенного интеграла не зависит от обозначения переменной интегрирования: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(z) dz = \int_{a}^{b} f(t) dt =$
- **2.** Определенный интеграл с одинаковыми пределами интегрирования равен нулю: $\int_{-\infty}^{a} f(x) dx = 0$.
 - **3.** Если a > b, то, по определению, полагаем $\int_a^b f(x)dx = -\int_b^a f(x)dx$.
- **4.** Постоянный множитель можно выносить за знак определенного интеграла: $\int\limits_{a}^{b} k \cdot f(x) dx = k \int\limits_{a}^{b} f(x) dx$.
- **5.** Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

6. Если функция f(x) интегрируема на [a, b] и a < c < b, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx.$$

7. (**теорема о среднем**). Если функция y = f(x) непрерывна на отрезке [a,b], то на этом отрезке существует точка $\tilde{n} \in [a,b]$, такая, что $\int_a^b f(x) dx = f(c) \cdot (b-a).$

4. Формула Ньютона-Лейбница

Вычисление определенных интегралов через предел интегральных сумм связано с большими трудностями. Поэтому существует другой метод,

основанный на тесной связи, существующей между понятиями определенного и неопределенного интегралов.

Теорема 2. Если функция y = f(x) непрерывна на отрезке [a, b] и F(x) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

$$\int_{a}^{b} f(x)dx = F(b) - F(a), \qquad (2)$$

которая называется формулой Ньютона—Лейбница. Разность F(b) - F(a) принято записывать следующим образом:

$$F(b) - F(a) = F(x)\Big|_a^b,$$

где символ $\Big|_a^b$ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

Нахождение определенных интегралов с помощью формулы Ньютона-Лейбница осуществляется в два этапа: на первом этапе находят некоторую первообразную F(x) для подынтегральной функции f(x); на втором – находится разность F(b) - F(a) значений этой первообразной на концах отрезка [a,b].

Пример 1. Вычислить интеграл $\int_{1}^{3} x^2 dx$.

Решение. Для подынтегральной функции $f(x)=x^2$ произвольная первообразная имеет вид $F(x)=\frac{x^3}{3}+\tilde{N}$. Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид: $F(x)=\frac{x^3}{3}$.

Тогда
$$\int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{3} = \frac{3^{3}}{3} - \frac{1^{3}}{3} = 9 - \frac{1}{3} = 8\frac{1}{3}.$$

Пример 2. Вычислить интеграл $\int_{0}^{\frac{\pi}{4}} \cos 2x dx$.

Решение. По формуле Ньютона-Лейбница имеем:

$$\int_0^{\frac{\pi}{4}} \cos 2x dx = \frac{1}{2} \sin 2x \Big|_0^{\frac{\pi}{4}} = \frac{1}{2} (\sin 2 \cdot \frac{\pi}{4} - \sin 2 \cdot 0) = \frac{1}{2} (\sin \frac{\pi}{2} - \sin 0) = \frac{1}{2} (1 - 0) = \frac{1}{2}.$$

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция f(x) непрерывна на отрезке [a, b]. Тогда, если: 1) функция $x = \varphi(t)$ и ее производная $\varphi'(t)$ непрерывны при $t \in [\alpha, \beta]$; 2) множеством значений функции $x = \varphi(t)$ при $t \in [\alpha, \beta]$ является отрезок [a, b]; 3) $\varphi(\alpha) = \grave{a}$, $\varphi(\beta) = b$, то справедлива формула

$$\int_{\alpha}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\phi(t)] \cdot \phi'(t)dt, \qquad (3)$$

которая называется формулой замены переменной в определенном интеграле.

Заметим, что как и в случае неопределенного интеграла, использование замены переменной позволяет упростить исходный интеграл, приблизив его к табличному. При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения $\varphi(t) = \hat{a}$ и $\varphi(t) = b$)).

На практике часто вместо подстановки $x = \varphi(t)$ используют подстановку t = g(x). В этом случае нахождение новых пределов интегрирования по переменной t упрощается: $\alpha = g(a)$, $\beta = g(b)$.

Пример 3. Вычислить интеграл
$$\int_{3}^{8} \frac{x dx}{\sqrt{1+x}}$$

Решение. Введем новую переменную по формуле $\sqrt{1+x}=t$. Определим x и dx. Возведя в квадрат обе части равенства $\sqrt{1+x}=t$, получим $1+x=t^2$, откуда $x=t^2-1$, $dx=(t^2-1)'dt=2tdt$. Находим новые пределы интегрирования. Для этого в формулу $\sqrt{1+x}=t$ подставим старые пределы x=3 и x=8. Получим: $\sqrt{1+3}=t$, откуда t=2 и, следовательно, $\alpha=2$; $\sqrt{1+8}=t$, откуда t=3 и, следовательно, $\beta=3$. Таким образом:

$$\int_{3}^{8} \frac{x dx}{\sqrt{1+x}} = \int_{2}^{3} \frac{(t^{2}-1)2t dt}{t} = 2\int_{2}^{3} (t^{2}-1) dt = 2\int_{2}^{3} t^{2} dt - 2\int_{2}^{3} dt = 2 \cdot \frac{t^{3}}{3} \Big|_{2}^{3} - 2t \Big|_{2}^{3} = \frac{2}{3} (3^{3}-2^{3}) - 2(3-2) = \frac{2}{3} \cdot 19 - 2 = \frac{32}{3} = 10\frac{2}{3}.$$

Пример 4. Вычислить интеграл $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2\cos x + 3}$.

Решение. Воспользуемся универсальной тригонометрической подстановкой. Положим $t=tg\,\frac{x}{2}$, откуда $x=2arctg\,t,\;\;dx=\frac{2dt}{1+t^2}$, $\cos x=\frac{1-t^2}{1+t^2}$

. Найдем новые пределы интегрирования: если x = 0, то t = tg0 = 0; если $x = \frac{\pi}{2}$

, то $t = tg \frac{\pi}{2} = 1$. Значит, $\alpha = 0$, $\beta = 1$. Следовательно:

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2\cos x + 3} = \int_{0}^{1} \frac{\frac{2dt}{1 + t^{2}}}{2\frac{1 - t^{2}}{1 + t^{2}} + 3} = \int_{0}^{1} \frac{\frac{2dt}{1 + t^{2}}}{\frac{2(1 - t^{2}) + 3(1 + t^{2})}{1 + t^{2}}} = \int_{0}^{1} \frac{2dt}{2 - 2t^{2} + 3 + 3t^{2}} =$$

$$= 2\int_{0}^{1} \frac{dt}{t^{2} + 5} = 2 \cdot \frac{1}{\sqrt{5}} \operatorname{arctg} \frac{t}{\sqrt{5}} \Big|_{0}^{1} = \frac{2}{\sqrt{5}} \left(\operatorname{arctg} \frac{1}{\sqrt{5}} - \operatorname{arctg} \frac{0}{\sqrt{5}} \right) =$$

$$= \frac{2}{\sqrt{5}} \left(\operatorname{arctg} \frac{1}{\sqrt{5}} - \operatorname{arctg} 0 \right) = \frac{2}{\sqrt{5}} \operatorname{arctg} \frac{1}{\sqrt{5}}.$$

Пример 5. Вычислить интеграл $\int_{1}^{2} x(3-x^2)^5 dx$.

Решение. Положим $t=3-x^2$, тогда $dt=(3-x^2)'dx=-2xdx$, откуда $xdx=-\frac{1}{2}dt$. Находим новые пределы интегрирования: $x=1 \to t=3-1^2=2$; $x=2 \to t=3-2^2=-1$. Имеем: $\alpha=2$, $\beta=-1$. Следовательно:

$$\int_{1}^{2} x (3 - x^{2})^{5} dx = \int_{2}^{-1} \left(-\frac{1}{2} \right) t^{5} dt = -\frac{1}{2} \int_{2}^{-1} t^{5} dt = \frac{1}{2} \int_{-1}^{2} t^{5} dt = \frac{1}{2} \cdot \frac{t^{6}}{6} \Big|_{-1}^{2} = \frac{1}{12} t^{6} \Big|_{-1}^{2} = \frac{1}{12} \left(2^{6} - (-1)^{6} \right) = \frac{1}{12} \cdot 63 = \frac{63}{12} = 5\frac{1}{4}.$$

6. Интегрирование по частям

Теорема 4. Пусть функции u = u(x) и v = v(x) имеют непрерывные производные на отрезке [a,b]. Тогда имеет место следующая формула интегрирования по частям:

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$
 (4)

Доказательство

Так как (uv)' = u'v + uv', то функция uv является первообразной для функции u'v + uv'. Тогда по формуле Ньютона–Лейбница получаем

$$|uv|_a^b = \int_a^b (u'v + uv')dx = \int_a^b u'vdx + \int_a^b uv'dx = \int_a^b vdu + \int_a^b udv,$$

откуда

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Пример 6. Вычислить $\int_{1}^{e} \ln x dx$.

Решение. Положим $u = \ln x$, dv = dx, отсюда $du = \frac{1}{x} dx$, v = x. Поформуле (4) находим

$$\int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} dx = x \ln x \Big|_{1}^{e} - x \Big|_{1}^{e} =$$

$$= e \ln e - 1 \cdot \ln 1 - (e - 1) = e - 0 - e + 1 = 1.$$

Пример 7. Вычислить $\int_{0}^{\pi} x \cos x dx$.

Решение. Пусть u = x, $dv = \cos x \, dx$, тогда du = dx, $v = \sin x$. Применяя формулу интегрирования по частям, получаем

$$\int_{0}^{\pi} x \cos x dx = x \sin x \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin x dx = x \sin x \Big|_{0}^{\pi} - (-\cos x) \Big|_{0}^{\pi} = x \sin x \Big|_{0}^{\pi} + \cos x \Big|_{0}^{\pi} =$$

$$= \pi \sin \pi - 0 \cdot \sin 0 + \cos \pi - \cos 0 = 0 - 0 - 1 - 1 = -2.$$

Пример 8. Вычислить $\int_{0}^{1} (x^2 - 1)e^x dx$.

Решение. Полагая $u = x^2 - 1$, $dv = e^x dx$, определяем du = 2x dx, $v = e^x$. Следовательно:

$$\int_{0}^{1} (x^{2} - 1)e^{x} dx = (x^{2} - 1) \cdot e^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} \cdot 2x dx = (x^{2} - 1) \cdot e^{x} \Big|_{0}^{1} - 2 \int_{0}^{1} x e^{x} dx =$$

$$= (1^{2} - 1) \cdot e^{1} - (0^{2} - 1) \cdot e^{0} - 2 \int_{0}^{1} x e^{x} dx = 1 - 2 \int_{0}^{1} x e^{x} dx = [\kappa]$$
полученному

интегралу снова применяем формулу интегрирования по частям: $u=x,\ dv=e^xdx;$ следовательно: $du=dx,\ v=e^x]=1-2\left(xe^x|_0^1-\int_0^1e^xdx\right)=1-2(1\cdot e^1-0\cdot e^0-\int_0^1e^xdx\right)=1-2(e-e^x|_0^1)=1-2(e-(e^1-e^0))=1-2(e-e+1)=1-2=-1.$