Уважаемые студенты!

Задание:

- 1. Прочтите приведенный ниже конспект лекции.
- 2. Напишите конспект лекции в тетрадь объемом не менее 5 страниц рукописного текста.
 - 3. Ответьте письменно на контрольные вопросы.
- 4. Письменный отчет конспекта лекции и ответов на вопросы в виде фото предоставьте преподавателю на e-mail (tamara_grechko@mail.ru).

Обратите внимание!!! В случае возникновения вопросов по теоретическому материалу лекции обращайтесь для консультации к преподавателю по тел. 0721355729 (Ватсап).

С уважением, Гречко Тамара Ивановна!

Лекция

Тема Колебательный контур. Свободные электромагнитные колебания

Цель: сформировать понятия электромагнитных колебаний и колебательного контура; сформировать представление как в колебательном контуре энергия электрического поля периодически превращается в энергию магнитного поля

План

- 1. Колебательный контур
- 2. Основные понятия

Электромагнитные колебания – периодические изменения электромагнитных величин (электрического заряда, силы тока и напряжения)

Простейшая система, в которой могут возникать свободные электромагнитные колебания, — колебательный контур. Он состоит из конденсатора и катушки, которая присоединена к его обкладкам.

Колебательный контур — система, состоящая из конденсатора и катушки, присоединённой к его обкладкам.

В такой колебательной системе возникают свободные электромагнитные колебания – колебания силы тока, заряда и напряжения.

Рассмотрим процессы, происходящие в колебательном контуре в различные моменты времени.

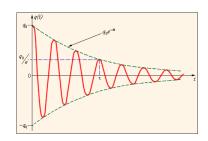
Вам известно, что период – это время, за которое совершается одно полное колебание. Будем рассматривать процессы, происходящие в колебательном контуре через каждую четверть периода

t	Стадии колебательного процесса		Аналогия между электромагнитными колебаниями в контуре и		
	В конденсаторе	В катушке	механическими колебаниями		
t = 0	Начало разрядки конденсатора	Начинает течь ток	+q -q	$W = \frac{q^2}{2C}$	$E=\Pi_{\max}$
$t = \frac{1}{4}T$	Конденсатор разряжен	Ток максимален	T (TABLE)	$W=\frac{LI^2}{2}$	$E=K_{\text{max}}$
$t = \frac{1}{2}T$	Конденсатор перезаряжается	Ток равен нулю		$W = \frac{q^2}{2C}$	Е=П _{max}
$t = \frac{3}{4}T$	Конденсатор вновь разряжен	Ток максимален и направлен противопол.	James T	$W = \frac{LI^2}{2}$	$E=K_{\text{max}}$

Период колебаний – время одного полного колебания

$$[T] = c T = 2\pi\sqrt{LC}$$

Частота электромагнитных колебаний – число колебаний за единицу времени (1 c)


$$\left[\nu\right] = \frac{1}{c} = \Gamma u \qquad \qquad \nu = \frac{1}{T} = \frac{1}{2\pi\sqrt{LC}}$$

Циклическая частота колебаний – число колебаний за 2π секунд

Связь циклической частоты с периодом и частотой колебаний:

$$\left[\omega\right] = \frac{pa\partial}{c}$$

$$\omega = 2\pi v$$

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{1}{\sqrt{LC}}$$
 Таким образом,

Колебания в реальном колебательном контуре затухают из-за потерь энергии на нагревание провода. Посмотрите график зависимости заряда на обкладке конденсатора от времени.

Когда по проводнику течёт ток, он нагревает проводник, на что затрачивается часть энергии, и колебания постепенно затухают (уменьшается амплитуда колебаний).

Мы рассматривали сегодня колебания в колебательном контуре, которые не затухали. Эти колебания могут происходить только в том случае, когда колебательный контур идеальный (как математическая модель), либо в случае, когда колебательный контур находится в сверхпроводящем состоянии, т.е. сопротивление контура R=0.

Когда сопротивление контура R=0, то колебания в контуре не затухают.

Дайте ответы на поставленные вопросы:

1. Периодические изменения заряда, силы тока, напряжения называются

- А. механическими колебаниями
- Б. электромагнитными колебаниями
- В. свободными колебаниями
- Г. вынужденными колебаниями

2. Колебательный контур состоит из

- А. катушки и резистора
- Б. конденсатора и лампы
- В. конденсатора и катушки индуктивности
- Г. конденсатора и вольтметра

- 3. Условия возникновения электромагнитных колебаний:
- А. Наличие колебательного контура
- Б. Электрическое сопротивление должно быть очень маленьким.
- В. Зарядить конденсатор (вывести систему из равновесия).
- Г. Все три условия (А, Б и В)
- 4. Какой энергией обладает колебательный контур в момент, когда заряд конденсатора максимален?
 - А. Энергией электрического пол
 - Б. Энергией магнитного поля
 - В. Энергией магнитного и электрического поле
 - Г. Энергией гравитационного, магнитного и электрического полей.
- 5. Какой энергией обладает колебательный контур в момент, когда ток в катушке максимален?
 - А. Энергией электрического поля
 - Б. Энергией магнитного поля
 - В. Энергией магнитного и электрического полей
 - Г. Энергией гравитационного, магнитного и электрического полей
- 6. В колебательном контуре после разрядки конденсатора ток исчезает не сразу, а постепенно уменьшается, перезаряжая конденсатор. Это связано с явлением
 - А. инерции
 - Б. электростатической индукции
 - В. самоиндукции
- 7. В колебательном контуре энергия электрического поля конденсатора периодически превращается

А. в энергию магнитного поля тока

Б. в энергию электрического поля

В. в механическую

Г. в световую энергию

8. Каким выражением определяется период *Т* электромагнитных колебаний в контуре, состоящем из конденсатора и катушки индуктивности?

энергию

A.
$$\sqrt{LC}$$
 B. $2\pi\sqrt{LC}$ B. $\frac{1}{\sqrt{LC}}$ $\Gamma \cdot \frac{1}{2\pi\sqrt{LC}}$

9. Каким выражением определяется частота *v* электромагнитных колебаний в контуре, состоящем из конденсатора и катушки индуктивности?

A.
$$\sqrt{LC}$$
 B. $2\pi\sqrt{LC}$ B. $\frac{1}{\sqrt{LC}}$ $\Gamma \cdot \frac{1}{2\pi\sqrt{LC}}$

- 10. Какие из описанных ниже колебательных процессов можно отнести к электромагнитным колебаниям?
 - А. Колебания груза на пружине в магнитном поле, создаваемом электромагнитом.
 - Б. Колебания математического маятника в магнитном поле Земли.
 - В. Колебания силы тока в контуре, состоящем из конденсатора и катушки индуктивности.
 - Г. Все три из описанных колебательных процессов.

Задания

1 группа

- 1. Как и во сколько раз измениться частота собственных электромагнитных колебаний в контуре, если электроемкость конденсатора увеличит в 4 раза?
- 2. Колебательный контур состоит из катушки индуктивности и конденсатора. Индуктивность катушки уменьшили от 36 мГн до 4 мГн. Как

и во сколько раз изменится в результате этого частота электромагнитных колебаний в контуре?

В наборе радиодеталей для изготовления простого колебательного контура имеются две катушки с индуктивностями L_1 =1 мк Γ н и L_2 =2 мк Γ н ,а также два конденсатора, емкость которых C_1 =30п Φ и C_2 =40п Φ . При каком выборе двух элементов из этого набора частота собственных колебаний контура будет наибольшей?