Задание

- 1. Ознакомиться с примерами решения типовых задач, повторить теоретический материал темы. Выполнить задания для самостоятельной работы.
 - 4. Фотоотчет присылать на электронную почту

С уважением, Хвастова Светлана Ивановна

!!! Если возникнут вопросы обращаться по телефону 0721389311 (ватсап).

Электронная почта: xvsviv@rambler.ru

Практическая работа

Тема: Решение задач по комбинаторным формулам без повторений.

Цель:

- 1) Отработать навыки применения определений элементов комбинаторики, ее основных свойств и формул при решении упражнений и задач по теории вероятности.
- 2) Создать условия для развития коммуникативно-творческих умений: не шаблонно подходить к решению различных задач.
- 3) Воспитание познавательной самостоятельности: развитие умения самостоятельно классифицировать, выполнять анализ, оценивать результаты.

Теоретический материал:

1. Размещения.

Множество В называется подмножеством множества A, если каждый элемент В принадлежит А.Запись: В \subset A (множество В является подмножеством множества A). Считают также, что пустое множество является подмножеством любого множества ($O \subset A$) и любое множество является подмножеством самого себя ($A \subset A$). Каждое упорядоченное подмножество множества A называют **размещением**. Пусть множество A содержит п элементов. Часто возникает вопрос: сколько размещений по m элементов можно составить из $n(m \le n)$ элементов множества A? Чтобы ответить на этот вопрос, докажем теорему: число A_n^m размещений, состоящих из n элементов, взятых из m элементов, равно

$$A_n^m = \frac{n!}{(n-m)!} (m \le n)$$
. T.e. $A_n^m = n(n-1)(n-2)...(n-m+1)$.

<u>Пример1.</u> Число перемещений из 5 элементов по 3 равно

$$A_5^3 = 5 \cdot 4 \cdot 3 = 60.$$

<u>Пример 2.</u> Сколькими способами можно выбрать четырёх человек на различные должности из девяти кандидатов на эти должности?

Так как каждый выбор 4 человек из 9 имеющихся должен иметь определенный порядок распределения их на должности, то мы имеем задачу составления размещений из 9 по 4.

$$A_9^4 = \frac{9!}{5!} = 9 \cdot 8 \cdot 7 \cdot 6 = 3024$$
. Ответ:3024 способами.

2. Перестановки.

Часто приходится рассматривать упорядоченные множества, т.е. множества в которых, каждый элемент занимает своё, вполне определенное место. Упорядочить множество-это значить поставить какой —либо элемент множества на первое место, какой либо другой элемент- на второе место и.т.д. Упорядоченные множества принято иногда записывать в круглых скобках.

Упорядочить множество можно различными способами. Например, множество состоящие из трёх элементов a,b и c, можно упорядочить шестью способами(a,b,c,);(a,c,b);(b,a,c);(b,c,a);(c,a,b);(c,b,a).

Каждое упорядоченное множество каких-либо элементов называется **перестановкой**. Сколько можно составить перестановок из n элементов?

<u>Пример1.</u> Если множество состоит из одного элемента a_1 , то его можно, очевидно, упорядочить единственным способом , а именно (a_1) . Итак, из одного элемента можно составить одну перестановку.

<u>Пример2</u>. Пусть имеются два элемента : a_1 и a_2 . Ясно, что из этих элементов можно составить только две перестановки: поставить a_2 перед a_1 или поставить a_2 после a_1 :(a_2 , a_1); (a_1 , a_2). Итак, число перестановок из двух элементов равно $1 \bullet 2$.

Пример3. Пусть имеются три элемента: a_1,a_2 и a_3 .Запишем сначала перестановки из двух элементов a_1 и a_2 и в каждую из этих перестановок впишем элемент a_3 вначале на первое место, потом на второе место и , наконец, на третье -последние место. Получи шесть перестановок: $(,a_3,a_2,a_1)$; (a_2,a_3,a_1) ; (a_2,a_1,a_3) ; (a_3,a_3,a_2) ; (a_1,a_3,a_2) ; (a_1,a_2,a_3) . Итак, число перестановок из трех элементов равно $1 \bullet 2 \bullet 3 = 6$

Пример4. Пусть имеются четыре элемента: a_1, a_2, a_3, a_4 . Запищем все перестановки из трёх элементов a_1, a_2 и a_3 (их число равно $1 \cdot 2 \cdot 3 = 6$)

и в каждую из этих перестановок впишем элемент а₄ в начале на первое место, потом на второе, затем на третье и, наконец, на четвёртое- последние место). Получаем 24 перестановки:

 $(a_4,a_3,a_2,a_1);(a_2,a_4,a_3,a_1);(a_2,a_3,a_4,a_1);(a_3,a_2,a_1,a_4);(a_4,a_2,a_3,a_1);(a_2,a_4,a_3,a_1);\\(a_2,a_3,a_4,a_1);(a_2,a_3,a_1,a_4);\ldots;(a_4,a_1,a_2,a_3);(a_1,a_4,a_2,a_3);(a_1,a_2,a_4,a_3);(a_1,a_2,a_3,a_4).$

Итак, число перестановок из четырёх элементов равно $1 \cdot 2 \cdot 3 \cdot 4 = 24$.

Теперь можно сформулировать теорему : число перестановок из n элементов равно произведению n первых натуральных чисел, т.е. $P_n=1 \bullet 2 \bullet 3 \bullet 4 \bullet 5....n$ (где P_n -число перестановок из n элементов). Произведение n первых натуральных чисел обозначают n! (читается «эн факториал»), например:

$$1!=1;2!=1 \cdot 2;3!=1 \cdot 2 \cdot 3;4!=1 \cdot 2 \cdot 3 \cdot 4.$$

3. Сочетания.

Пусть имеется множество $A = \{a_1, a_2 a_3 ..., a_n\}$, состоящие из n элементов. Из этого множества можно составить подмножество, состоящие из m элементов ($m \le n$). Каждое подмножество состоящие из т элементов, содержащихся в множестве А из п элементов, называется сочетанием из п элементов по m . Число всех таких сочетаний обозначается через C_n^m . Сколько всех сочетаний по m элементов можно образовать из данных n элементов? Для ответа на этот вопрос докажем теорему: число $\,C_{\scriptscriptstyle n}^{\scriptscriptstyle m}\,$ сочетаний из n элементов

по m равно
$$C_n^m = \frac{n!}{m!(m-n)!}$$
. $C_n^m = \frac{A_n^m}{m!} u \pi u C_n^m = \frac{n!}{m!(n-m)!}$.

Пример 1. Вычислить C_8^3 . Применяя формулу сочетаний, имеем C_8^3 =

$$\frac{8!}{3!5!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 81}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 56.$$

Пример 2. На плоскости расположено 5 точек. Сколько отрезков, концами которых являются эти точки, определяются этими точками?

Решение. Каждые две точки определяют один отрезок, у которого они являются концами .При этом не играет роли, в каком порядке взяты данные точки. Поэтому число отрезков равно числу всевозможных пар точек, которые можно создать из 5 данных точек. Таким образом, решения задачи сводится к нахождению числа сочетаний из 5 элементов по 2:

$$C_5^2 = \frac{5!}{2!3!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3} = 10.$$

Практическая часть:

Таблица вариантов

№ в журнале	вариант	№ в журнале	вариант	№ в журнале	вариант
1	1	6	2	11	3
2	2	7	3	12	4
3	3	8	4	13	1
4	4	9	1	14	2
5	1	10	2	15	3

Задания для самостоятельного решения

1 вариант	2 вариант	3 вариант	4 вариант	5 вариант			
1. Вычислить:							

$A_7^3 + A_6^3$	$A_9^3 + A_5^3$	$A_6^3 + A_5^3$	$A_8^3 + A_7^5$	$A_5^4 + A_9^6$			
P_6	P_5	P_7	P_9	P_8			
$\frac{P_{6}}{C_{7}^{5}}$	C_{14}^{9}	C_{21}^{17}	C_{28}^{20}	C_{35}^{29}			
2. Решите задачи:							
Сколькими	Сколькими	Из отряда	Сколько	Сколько			
способами можно	способами	солдат в 50	различных	различных			
рассадить четыре	трое мальчиков	человек,	аккордов можно	перестановок			
человека в один	-Петя, Алмаз,	назначают в	взять на десяти	можно			
ряд?	Куат - могут	караул 4	выбранных	составить из			
	встать в один	человека.	клавишах рояля,	букв слова			
	ряд?	Сколькими	если каждый	«кортеж»?			
		способами это	аккорд может				
		можно сделать?	содержать до				
			трех звуков?				
На станции 7	В классе	Сколькими	Сколькими	На плоскости			
железнодорожных	изучают 10	способами	способами	даны точки А,			
путей. Сколькими	предметов.	могут быть	можно составить	B, C, D.			
способами можно	Сколькими	присуждены 1-	трехцветный	Сколько			
расположить на	способами	я, 2-я, 3-я	флаг (три	векторов			
этих путях	можно	премии трем	горизонтальные	ОНЖОМ			
прибывшие 3	составить	лицам, если	полосы равной	образовать,			
поезда?	расписание на	число	ширины), если	соединяя эти			
	один день,	соревнующихся	имеется	точки?			
	чтобы в нем	равно 10?	материал пяти				
	было 4 разных		различных				
	предмета?		цветов?				
Сколько отрезков	На плоскости	Сколькими	Сколько	Сколько			
можно получить,	даны точки А,	способами	различных	треугольников			
соединяя попарно	B, C, D.	можно	перестановок	МОЖНО			
9 точек?	Сколько	рассадить 12	можно составить	построить,			
	отрезков	человек за	из букв слова	соединяя			
	МОЖНО	круглым	«треугольник»?	попарно семь			
	получить,	столом?		точек, любые			
	соединяя			три из которых			
	попарно эти точки?			не лежат на			
3. Проверить вычислением		одной прямой? 3.Решите уравнение:					
	в вычислением венства:	эл сшиге уравнение.					
$C_7^4 + C_7^3 = C_8^4$	$C_{10}^5 + C_{10}^6$	$A_n^5 = 18A_{n-2}^4$	$A_n^4 = 12A_n^2$	(n+2)!			
0,10,-08	$= C_{11}^6$	1-n 1011n-2	nn	$\frac{(n+2)!}{n!} = 72$			
	<u> </u>	L	<u> </u>	16.			

Контрольные вопросы:

- 1. Что такое п факториал? Его обозначение.
- 2. Дайте определение размещения и запишите формулу размещения из п элементов по т элементов.
- 3. Дайте определение перестановки и запишите формулу перестановки из п различных элементов.
- 4. Дайте определение сочетания и запишите формулы сочетания из п элементов по т элементов.