Задание

- 1. Изучить теоретический материал, законспектировать.
- 2. Фотоотчет присылать на электронную почту

С уважением, Хвастова Светлана Ивановна

!!! Если возникнут вопросы обращаться по телефону 0721389311.

Электронная почта: xvsviv@rambler.ru

Лекция на тему: «Понятие автомата» План

- 1. Понятие автомата
- 2. Задание автоматов
- 3. Законы функционирования автоматов.

1. Понятие автомата

Автомат — дискретный преобразователь информации, который на основе входных сигналов, поступающих в дискретные моменты времени, и с учетом своего состояния вырабатывает выходные сигналы и изменяет свое состояние.

В данном разделе рассматриваются абстрактные автоматы, т.е. некоторая математическая модель. Вопросы практической реализации не рассматриваются. В связи с этим при построении автоматов будем иметь в виду, что:

- 1. Автомат функционирует в абстрактном времени.
- 2. Все переходы происходят мгновенно.

Автомат представляет собой кортеж 6 –го порядка:

$$\alpha = \langle X, Y, A, f(t), \varphi(t), a_0 \rangle, \tag{1}$$

где X — множество входных сигналов (входной алфавит),

У – множество выходных сигналов (выходной алфавит),

A — множество внутренних состояний,

f(t) — функция перехода,

 $\varphi(t)$ — функция выхода,

 $a_0 \in A$ - начальное состояние автомата.

2. Законы функционирования автоматов.

В зависимости от законов функционирования различают 3 вида автоматов:

1. Автоматы первого рода, или автоматы Мили:

$$a(t) = f(a(t-1), x(t))$$

$$y(t) = \varphi(a(t-1), x(t))$$
(2)

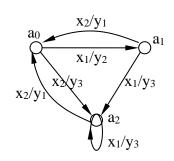
2. Автоматы второго рода

$$a(t) = f(a(t-1), x(t))$$

$$y(t) = \varphi(a(t), x(t))$$
(3)

3. Правильные автоматы второго рода, или автоматы Мура:

$$a(t) = f(a(t-1), x(t))$$


$$y(t) = \varphi(a(t))$$
(4)

На практике наибольшее распространение получили автоматы Мили и автоматы Мура.

3. Задание автоматов

Автоматы могут быть заданы следующими способами:

1. В виде графа

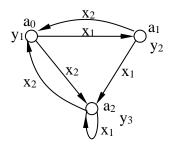


РИС. 1. Автомат Мили

РИС. 2. Автомат Мура.

При построении автомата Мили каждая дуга, соединяющая вершины a_i и a_j , имеет обозначение x_k/y_m . Это означает следующее: находясь, в состоянии a_i автомат, отрабатывая входной сигнал x_k , выдает выходной сигнал y_m и переходит в состояние a_i .

Так как в автомате Мура выходной сигнал y_m зависит только от текущего состояния a_j , то каждая дуга, соединяющая вершины a_i и a_j , имеет обозначение x_l

2. В виде таблиц перехода и выхода (автомат Мили); отмеченной таблицы перехода (автомат Мура).

Автомат Мили описывается с помощью двух таблиц: таблицы перехода и таблицы выхода:

Таблица переходов (ТП)

	' 1	, ,	
	a_0	a_1	a_2
<i>x</i> ₁	<i>a</i> ₁	a_2	<i>a</i> ₂
x_2	a_2	a_0	a_0

Таблица выходов (ТВ)

	<i>a</i> ₀	a_1	a_2
<i>x</i> ₁	y_2	<i>y</i> ₃	y_3
x_2	<i>y</i> ₃	y ₁	y ₁

Автомат Мура описывается с помощью отмеченной таблицы перехода:

Таблица переходов (TП)				
	y ₁	<i>y</i> ₂	y_3	
	a_0	<i>a</i> ₁	a_2	
<i>x</i> ₁	<i>a</i> ₁	a_2	a_2	
x_2	a_{2}	a_0	a_{0}	

ПРИМЕР.

Синтезировать автомат, на вход которого подаются монеты номинальной стоимостью 1, 2 и 3 копейки, а на выходе автомат выдает билет, если сумма набранных монет составляет 3 копейки, если сумма меньше 3 копеек, то автомат ничего не выдает, если сумма больше 3 копеек, то автомат возвращает деньги.

Определим входной, выходной алфавиты и множество внутренних состояний:

- входной алфавит $X = \{1,2,3\}$ монеты номинальной стоимостью 1, 2 и 3 копейки
- выходной алфавит $Y = \{H, \mathcal{E}, B\}$ на выходе возможны выходные символы: H ничего; \mathcal{E} билет; \mathcal{E} возврат.
- множество внутренних состояний $A = \{a_0, a_1, a_2, a_3\}$,

где $a_0^{}$ - начальное состояние автомата « в автомате ничего нет»;

 a_1 - «в автомате 1 копейка»;

 a_1 - «в автомате 1 копейка»;

 a_2 - «в автомате 2 копейки»;

 a_3 - «в автомате 3 копейки».

Граф автомата имеет вид:

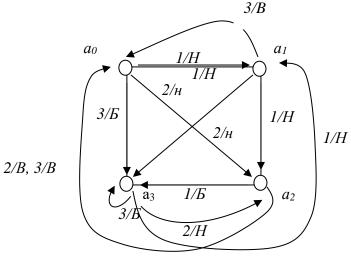


РИС. 3. Автомат Мили

Таблицы перехода и выхода представлены в виде:

Таблина перехолов (ТП)

таолица переходов (111)				
	a_0	<i>a</i> ₁	a_2	a_3
1	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₁
2	<i>a</i> ₂	<i>a</i> ₃	a_0	<i>a</i> ₂
3	<i>a</i> ₃	a_0	a_0	a_3

Таблица выходов (ТВ)

	1	, ,		
	a_0	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
1	Н	Н	Б	Н
2	Н	Б	В	Н
3	Б	В	В	Б

Неопределенным состоянием называется несуществующее состояние.

Частичным автоматом называется автомат, в котором некоторые состояния в таблице перехода не определены. Для дальнейшего исследования неопределенное состояние некоторым образом доопределяют.