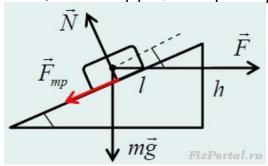
Ув. студенты! Вам необходимо ответить на экзаменационный билет и прислать ответ **16.06** до 12.00 на электронный адрес преподавателя vika-lnr@mail.ru

Если возникнут вопросы обращаться по телефону +7(959)106-54-33

1.	Верхулевский Кирилл Александрович	Билет № 1
2.	Елисеева Ирина Васильевна	Билет № 2
3.	Емельянов Александр Николаевич	Билет № 3
4.	Зенин Даниил Юрьевич	Билет № 4
5.	Калашник Лилия Анатольевна	Билет № 5
6.	Касьянов Владислав Сергеевич	Билет № 6
7.	Коваленко Никита Андреевич	Билет № 7
8.	Луганская Ирина Александровна	Билет № 8
9.	Макаренко Артем Юрьевич	Билет № 9
10	Мельников Вадим Артурович	Билет № 10
11	Паламарчук Иван Викторович	Билет № 11
12	Песковой Дмитрий Андреевич	Билет № 12
13	Приходько Максим Александрович	Билет № 13

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ЛУГАНСКОЙ НАРОДНОЙ РЕСПУБЛИКИ «СТАХАНОВСКИЙ МАШИНОСТРОИТЕЛЬНЫЙ ТЕХНИКУМ»

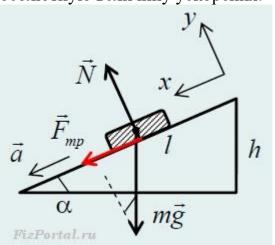

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 1

- 1. Основные понятия и аксиомы статики
- 2. Общие сведения о передачах
- 3. Задача

Тело поднимают вверх по наклонной плоскости, прикладывая к нему горизонтальную силу, величина которой вдвое больше действующей на тело силы тяжести. Высота наклонной плоскости 3 м, её длина 5 м. Найдите ускорение тела, если коэффициент трения равен 0,2

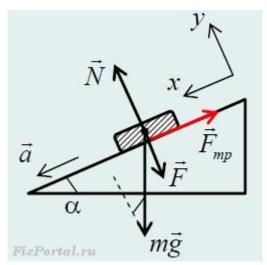

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 2

- 1. Связи, реакции связей
- 2. Фрикционные передачи и вариаторы
- 3. Задача

Вверх по наклонной плоскости высотой **9 м** и длиной **15 м** пущена шайба. Коэффициент трения равен **0,5**. Найдите ускорение шайбы. В ответе укажите абсолютную величину ускорения.


Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 3

- 1. Определение равнодействующей в плоской системе сходящихся сил
- 2. Зубчатые передачи, общие сведения, основы теории зубчатого зацепления
- 3. Задача

По наклонной плоскости скользит с ускорением $\mathbf{a} = 1 \text{ м/c}^2$ брусок массой $\mathbf{m} = 200 \text{ г}$. С какой силой \mathbf{F} нужно прижимать брусок перпендикулярно наклонной плоскости, чтобы он начал двигаться равномерно? Коэффициент трения бруска о наклонную плоскость $\mathbf{\mu} = \mathbf{0}, \mathbf{1}$.

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 4

- 1. Балочные системы, классификация нагрузок и виды опор
- 2. Прямозубые цилиндрические передачи (основные параметры, силы, расчёт на прочность)
- 3. Задача

На столе лежит деревянный брусок массой $\mathbf{M} = \mathbf{2}$ кг, к которому привязана нить, перекинутая через блок, укрепленный на краю стола. К свободному концу нити подвешен груз массой $\mathbf{m} = \mathbf{1}$ кг, вследствие чего брусок движется с ускорением $\mathbf{a} = \mathbf{0}, \mathbf{6}$ м/ \mathbf{c}^2 . Каковы будут ускорения груза и бруска, а также натяжение нити, если вся система будет: а) подниматься с ускорением $\mathbf{a} = \mathbf{2}, \mathbf{2}$ м/ \mathbf{c}^2 ; б) опускаться с тем же по модулю ускорением?

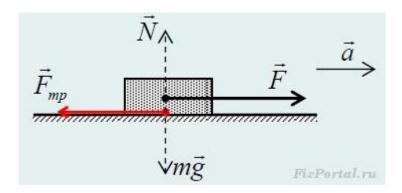
Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 5

- 1. Определение опорных реакций балок
- 2. Косозубые цилиндрические передачи. Особенности геометрии и расчёт на прочность
- 3. Задача

С помощью прочного троса груз равноускоренно поднимают с поверхности земли вертикально вверх. Через $\Delta t = 5.0$ с после начала подъема груз уже находился на высоте h = 15 м, продолжая движение. Сила тяги подъемного механизма к этому моменту времени, когда тело достигло высоты h = 15 м, совершила работу A = 8.4 кДж. Определите массу поднимаемого груза.


Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 6

- 1. Определение центральных плоских фигур
- 2. Конические зубчатые передачи, особенности геометрии и расчёт
- 3. Задача

Брусок массой $\mathbf{m}=2,0$ кг движется без начальной скорости по горизонтальной поверхности под действием силы, модуль которой $\mathbf{F}=\mathbf{10}$ H, направленной параллельно этой поверхности. Коэффициент трения между бруском и поверхностью $\mathbf{\mu}=\mathbf{0},\mathbf{20}$. Через какой промежуток времени $\Delta \mathbf{t}$, модуль скорости у тела станет равным $\mathbf{v}=\mathbf{30}$ м/с.

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность <u>22.02.06 Сварочное производство</u>

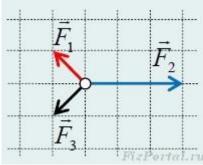
Техническая механика

Экзаменационный билет № 7

- 1. Трение
- 2. Передача винт-гайка, основы расчёта передачи
- 3. Задача

С какой минимальной силой нужно тянуть за веревку, чтобы равномерно перемещать сани массой $\mathbf{m}=\mathbf{10}$ кг по горизонтальному асфальту, если коэффициент трения скольжения $\mathbf{\mu}=\mathbf{0.7}$?

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство


Техническая механика

Экзаменационный билет № 8

- 1. Кинематика, основные понятия, кинематика точки
- 2. Червячная передача: общие сведения, типы передач, геометрические соотношения
- 3. Задача

На рисунке изображены три силы, которые подействовали на тело массой $1~\kappa \Gamma$, покоящееся в инерциальной системе отсчета. Если одна клеточка соответствует силе 10~H, то тело тело будет двигаться ... с модулем ускорением ...

- 1) по направлению силы \mathbf{F}_2 , $\mathbf{10} \ \mathbf{m/c^2}$;
- 2) по направлению силы $\mathbf{F_{3}}$, 5 м/ $\mathbf{c^{2}}$;
- 3) по направлению силы F_1 , 10 м/ c^2 ;
- 4) против направления силы F_2 , 10 м/ c^2 ;
 - 5) тело будет покоится, 0 м/c^2 .

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

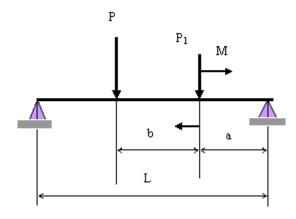
Техническая механика

Экзаменационный билет № 9

- 1. Простейшие движения твёрдого тела
- 2. Ременные передачи: общие сведения, детали, расчёт
- 3. Задача

В стальном листе толщиной $\delta = 6$ мм требует пробить отверстие диаметром d = 12 мм. Напряжение среза $\tau_{cp} = 190$ Н/мм². Определить усилие, необходимое для выполнения этой работы.

Основная образовательная программа Специалист среднего звена Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство


Техническая механика

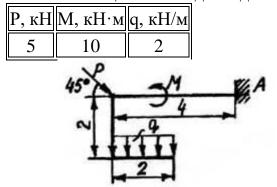
Экзаменационный билет № 10

- 1. Основные понятия и аксиомы динамики
- 2. Цепные передачи: общие сведения, детали, расчёт
- 3. Задача

Круглый брус длиной \underline{L} =1300 мм. Нагружен силой P=1000 Н и силой P_1 = 1500 Н. Расстояние a= 300 мм, расстояние b =500 мм. Допускаемое напряжение изгиба материала бруса $[\sigma]_{us}$ = 240 Мпа. Определить диаметр стержня в месте приложения силы P_1 и момента M. Варианты величины момента M приведены в таблице.

M, Hм 800 900 1000 1100 1200 1300 1400 1500 1700 2000

Основная образовательная программа <u>Специалист среднего звена</u> Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность <u>22.02.06 Сварочное производство</u>


Техническая механика

Экзаменационный билет № 11

- 1. Определение реакций в системе по методу кинематики
- 2. Валы и оси. Назначение, классификация, элементы конструкций, материалы
- 3. Задача

На схеме показаны способы закрепления бруса, ось которого - ломаная линия. Задаваемая нагрузка и размеры указаны в таблице 1. Требуется определить реакции опор.

Таблица 1 - Исходные данные

Основная образовательная программа Специалист среднего звена Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность <u>22.02.06 Сварочное производство</u>

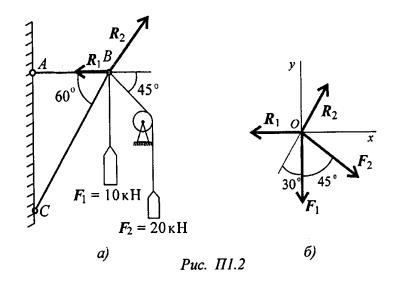
Техническая механика

Экзаменационный билет № 12

- 1. Работа и мощность
- 2. Опоры валов и осей: общие сведения, подшипники скольжения
- 3. Задача

Определить равнодействующую плоской системы сходящихся сил аналитическим и геометрическим способами.

Дано: F1 =
$$10\kappa$$
H;F2 = 15κ H;F3 = 12κ H;F4 = 8κ H;F5 = 8κ H; α I = 30° ; α 2 = 60° ; α 3 = 120° ; α 4 = 180° ; α 5 = 300° .


Основная образовательная программа Специалист среднего звена Направление подготовки <u>22.00.00 Технологии материалов</u> Специальность 22.02.06 Сварочное производство

Техническая механика

Экзаменационный билет № 13

- 1. Общие теоремы динамики
- 2. Подшипники качения: классификация, обозначение, особенности расчёта
- 3. Задача

Грузы подвешены на стержнях и канатах и находятся в равновесии. Определить реакции стержней AB и CB (рис. Пl.2).

