Задание

- 1. Прочитать внимательно лекцию.
- 2. Законспектировать лекцию в рабочую тетрадь, обязательно записать примеры решения и формулы.
- 3. Фотоотчёт конспекта прислать в течении 3 дней со дня получения задания на hvastov@rambler.ru

Лекция.

Тема: Применение интеграла к прикладным задачам

План.

- 1. Применение интеграла в физике.
- 2. Применение интеграла в математике.

Определённый интеграл имеет многочисленные приложения в математике, механике, физике, астрономии, технике и других областях человеческой деятельности. Мы рассмотрим здесь только применение в физике и математике.

Применение интеграла

Математика	Физика
 Вычисления S фигур. Длина дуги кривой. V тела на S параллельных сечений. V тела вращения и т.д. 	 Работа А переменной силы. S – (путь) перемещения. Вычисление массы. Вычисление момента инерции линии, круга, цилиндра. Вычисление координаты центра тяжести. Количество теплоты и т.д.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ.

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью $v=f(t)\geq \mathbf{0}$ за промежуток времени от t_1 до t_2 вычисляется по формуле $S=\int_{t_1}^{t_2}f(t)dt$

Примеры:

1. Скорость движения точки $v = (9t^2 - 8t)_{\rm M/c}$. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию,
$$f(t) = 9t^2 - 8t$$
, $t_1 = 3, t_2 = 4$. Следовательно, $s = \int_3^4 (9t^2 - 8t) dt = [3t^3 - 4t^2]_3^4 = 83$ (м).

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью $v = (6t^2 + 2t)$ м/с, второе — со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

$$s_1 = \int_0^5 (6t^2 + 2t) dt = [2t^2 + t^2]_0^5 = 275 \, (\text{M}), \\ s_2 = \int_0^5 (4t + 5) dt = [2t^2 + 5t]_0^5 = 75 \, (\text{M}), \\ s_1 - s_2 = 275 - 75 = 200 \, (\text{M}).$$

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = $(39,2-9,8^{\wedge})$ м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v=0, т.е. 39,2—9,8t=0, откуда I=4 с. По формуле на ходим

$$s = \int_0^4 (39.2 - 9.8t) dt = [39.2t - 4.9t^2]_0^4 = 78.4 \,(\text{M}).$$

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ.

Работа, произведенная переменной силой f(x) при перемещении по оси Ox материальной точки от x = a до x = b, находится по формуле

$$A = \int_{a}^{b} f(x) dx.$$

При решении задач на вычисление работы силы часто используется закон Γ у к а: F=kx, (3) где F — сила H; x—абсолютное удлинение пружины, м, вызванное силой F, а k — коэффициент пропорциональности, H/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0.01k, т. е. kK=5000 H/м. Находим пределы интегрирования: a=0.22-0.2=0.02 (м), b=0.32-0.2=0.12 (м). Теперь по формуле (2) получим

$$A = \int_{0,02}^{0,12} 5000 dx = 5000 \frac{x^2}{2} \Big|_{0,02}^{0,12} = 2500(0,0144 - 0,0004) = 2500 * 0,014 = 35 \text{ (Дж)}.$$

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА.

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dx Работа A, которую надо произвести, чтобы поднять слой воды весом P на высоту x, равна Px.

Изменение глубины x на малую величину dx вызовет изменение объема V на величину $dV = nr^2 dx$ и изменение веса P на величину $*dP = 9807 r^2 dx$; при этом совершаемая

работа A изменится на величину $dA=9807nr^2$ xdx. Проинтегрировав это равенство при изменении x от 0 до H, получим

$$A = \int_0^H 9807\pi r^2 x dx = 4903\pi r^2 H^2 = 4903\pi * 0.25 * 2^2 = 4903\pi$$
 (Дж)

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ.

Значение силы P давления жидкости на горизонтальную площадку зависит от глубины погружения x этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (H) на горизонтальную площадку вычисляется по формуле P = 9807 $^{\delta}$ S x, где $^{\delta}$ — плотность жидкости, кг/м 3 ; S — площадь площадки, м 2 ; x - глубина погружения площадки, м.

5. ДЛИНА ДУГИ.

Пусть плоская кривая AB задана уравнением y = f(x) ($a \le x \le b$), причем f(x) и f(x) — непрерывные функции в промежутке [a,b]. Тогда дифференциал dl длины

где а и b—значения независимой переменной x в точках A и B.

Если кривая задана уравнением $x = {}^{\varphi}(y)(c \ y \le d)$, то длина дуги AB вычисляется по формуле $L = \int_{c}^{d} \sqrt{1 + [\varphi'(y)]^2} dy$, где c и ∂ значения независимой переменной y в точках A и B.

6. ЦЕНТР МАСС.

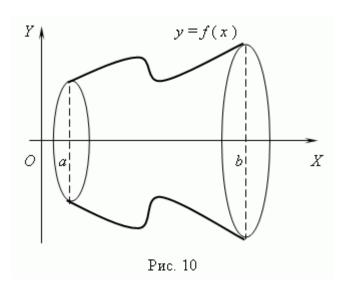
. Пример. Пусть вдоль стержня-отрезка [a;b] оси Ох - распределена масса плотностью ρ (x), где ρ (x) - непрерывная функция. Покажем, что a) суммарная масса М стержня равна $\int_{a}^{b} \rho(x) dx$; б) координата центра масс х'равна $\int_{a}^{b} x \rho(x) dx$.

Величины	Вычисление производной	Вычисление интеграла
A — работа; F — сила; N - мощность.	F(x)=A'(x); $N(t)=A'(t).$	$A = \int_{x_1}^{x_2} F(x) dx;$ $A = \int_{t_1}^{t_2} N(t) dt.$
m –масса тонкого стержня р – линейная плотность	P(x)=m'(x).	$ \int_{x_1}^{x_2} p(x) dx. $
Q –электрический заряд; I – сила тока.	I(t)=q'(t)	$Q = \int_{l_1}^{l_2} I(t) dt$

S —перемещение; v —скорость.	V(t)=S'(t)	$S = \int_{t_1}^{t_2} v(t)dt$
Q –количество теплоты; c – теплоёмкость.	C(t)=Q'(t)	$Q = \int_{t_1}^{t_2} c(t)dt$

Приложения определённого интеграла в геометрии.

Объём тела вращения. Рассмотрим тело, полученное вращением вокруг оси OX криволинейной трапеции, ограниченной графиком функции f(x), прямыми x = a и x = b и осью OX



Объём V тела вращения вокруг оси OX будет равен:

$$V = \pi \int_{a}^{b} f^{2}(x) dx.$$

Объём V тела вращения вокруг оси OY будет равен:

$$V = \pi \int_{\delta}^{\delta} x^2 dx$$

П р и м е р 1. Найти объём усечённого конуса, образованного вращением прямой y = x + 1 вокруг оси OX и ограниченной x = 0 и x = 3.

Решение. В соответствии с вышеприведенной формулой имеем:

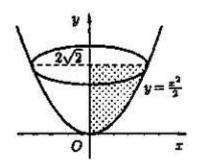
$$V = \pi \int_{0}^{3} (x+1)^{2} dx = \pi \int_{0}^{3} (x^{2} + 2x + 1) dx = (x^{3}/3 + x^{2} + x) \Big|_{0}^{3} = 21.$$

Пример 2.

Вычислите объём тела, полученного вращением кривой – графика функции $y=\sin x$, x=0, $x=\pi$, вокруг оси Ox.

$$V = \pi \int_{0}^{\pi} (\sin x)^{2} dx = \pi \int_{0}^{\pi} (1 - \cos^{2} x) dx = \pi \left(\int_{0}^{\pi} dx - \int_{0}^{\pi} \frac{\cos 2x + 1}{2} dx \right) = \pi \left(x \Big|_{0}^{\pi} - \frac{1}{4} \sin 2x \Big|_{0}^{\pi} - \frac{1}{2} x \Big|_{0}^{\pi} \right) = \frac{\pi^{2}}{2}$$

 Π р и м е р 3. Найти объем тела, образованного вращением фигуры, ограниченной линиями



$$y = \frac{x^2}{2}$$
, x=0, y= $2\sqrt{2}$ вокруг оси Оу

Решение:

$$x = \sqrt{2y}$$

$$V = \pi \int_{0}^{2\sqrt{2}} \left(\sqrt{2y}\right)^{2} dy = \pi \int_{0}^{2\sqrt{2}} 2y dy = \pi y^{2} \Big|_{0}^{2\sqrt{2}} = 8\pi$$

Контрольные вопросы:

- 1. Где применяется определенный интеграл?
- 2. Какие задачи можно решить с помощью определенного интеграла в физике?
- 3. Как найти путь, пройденный телом за определенное время?
- 4. Как вычислить работу тела?
- 5. Как найти объем тела вращения вокруг оси ОХ или вокруг оси ОУ?