Задание:

- Повторить теоретический материал;
- Используя методические рекомендации, решить практическую работу;
- Фотоотчёт прислать в течении 3 дней со дня получения задания на hvastov@rambler.ru

Практическое занятие

Тема: Логарифмические уравнения и неравенства.

Цель: Закрепить навыки решения логарифмических уравнений и неравенств.

Перед выполнением практической работы необходимо повторить основные методы решения логарифмических уравнений и неравенств.

Учебный элемент № 1

Цель: закрепить решение простейших логарифмических уравнений вида $\log_a x = B$ (где a > 0, a $\neq 1$).

Рекомендации к выполнению:

Вспомните определение логарифма.

Повторите схему решения логарифмических уравнений вида $\log_a x = B$

Логарифмическая функция возрастает (или убывает) на промежутке ($0; +\infty$) и принимает на этом промежутке все действительные значения. По теореме о корне для любого \boldsymbol{a} данное уравнение имеет единственное решение. Из определения логарифма следует, что $a^{\rm B}$ является таким решением.

Пример: решите уравнение $log_2(4x + 3) = 3$

Решение:
$$\log_2(4x + 3) = 3$$

$$4x + 3 = 2^3$$

$$4x = 8-3$$

$$\Delta \mathbf{v} = 5$$

$$x = 1^{\frac{1}{2}}$$

4x = 5 $x = 1\frac{1}{4}$ Ответ: $1\frac{1}{4}$ Выполните письменную самостоятельную работу (15 мин)

І вариант		II вариант	
1. $\log_3 x = 2$	(1 б)	$1.\log_2 x = 3$	(1 б)
$2.\log_5 x = -2$	(16)	$2. \log_4 x = -2$	(1 б)
$3.\log_2(x-4)=3$	(1 б)	$3.\log_5(13 - x) = 2$	(1 б)
$4.\log_8(x^2-1)=1$	(1 б)	$4. \log_2(x^2-1) = 3$	(2 б)
5.Lg(2-5x)=1	(2 б)	5. Lg(7-x) = -1	(26)

Учебный элемент № 2

Цель: закрепить умения решать логарифмические уравнения методом введения новой переменной.

Рекомендации к выполнению:

Внимательно разберите решение примера и выполните задания самостоятельной работы. Пример. Решите уравнение $\log_2 x - \log_2 x - 2 = 0$

• Решение: Введем новую переменную t, $t = \log_2 x$, тогда уравнение примет вид $t^2 - t - 2 = 0$

$$t = (-1)^2 - 4 \cdot 1 \ (-2) = 9$$
 $t_1 = \frac{1+3}{2} = 2 \quad ; \qquad t_2 = \frac{1-3}{2} = -1$
Если $t = 1$ тогда: $\log_2 x = -1$, $x = 2^{-1}$, $x = \frac{1}{2}$

сли
$$t = 1$$
 тогла: $\log_2 x = -1$, $x = 2^{-1}$, $x = \frac{1}{2}$

Если
$$t = 2$$
, тогда: $\log_2 x = 2$, $x = 2^2$, $x = 4$ Ответ: $\frac{1}{2}$; 4

Выполните письменную самостоятельную работу (10 мин)

Івариант		IIвариант	
1. $\log_3 x - 3 \log_3 x + 2 = 0$	(2 б)	$1.\log_3 x - 3\log_3 x + 2 = 0$	(2 б)
$2. \log_2 x - \log_2 x = 2$	(2 б)	$2.\log_{\frac{1}{3}}^{\frac{2}{3}} x - \log_3 x = 6$	(26)

Учебный элемент № 3

Цель: закрепить навыки решения логарифмических уравнений вида $\log_a f(x) = \log_a g(x)$

Рекомендации к выполнению:

Помните, что решение таких уравнений основано на том, что такое уравнение равносильно уравнению f(x) = g(x) при дополнительных условиях f(x) > 0, g(x) > 0.

Можно при решении таких уравнений использовать следующую схему:

$$log_a f(x) = log_a g(x)$$

$$\begin{cases} f(x) = g(x) \\ f(x) > 0 \end{cases} \quad \text{или} \qquad \begin{cases} f(x) = g(x) \\ g(x) > 0 \end{cases}$$

Внимательно разберите данные ниже решения и выполните задания самостоятельной работы.

Пример: Решите уравнения.

$$\log_2(x^2 - 3x + 1) = \log_2(2x - 3)$$

$$\begin{cases} x^2 - 3x + 1 = 2x - 3, \\ 2x - 3 > 0; \end{cases}$$

Решим уравнение
$$x^2 - 3x + 1 = 2x - 3$$
 $x^2 - 3x + 1 - 2x + 3 = 0$
 $x^2 - 5x + 4 = 0$
 $x - 5x + 4 = 0$

$$\begin{cases} x = 4 \text{ или } x = 1 \\ x > \frac{3}{2} \end{cases}$$

$$x = 4$$
 Other: 4.

Пример: Решите уравнение $Lg(x^2 + 75) - Lg(x - 4) = 2$

Пример. Решите уравнение
$$Lg(x^2+75) - Lg(x-4) = 2$$
Решение: $Lg(x^2+75) - Lg(x-4) = 2$
Найдем ОДЗ: $\begin{cases} x^2+75>0\\ x-4>0 \end{cases}$

$$\begin{cases} x-\text{любое число}\\ x>4 \end{cases}$$

$$\begin{cases} x > 4 \end{cases}$$
 ОДЗ: $(4; +\infty)$

$$Lg(x^2+75)=2+Lg(x-4)$$
 $Lg(x^2+75)=Lg100+Lg(x-4)$
 $Lg(x^2+75)=Lg(100x-400)$
 $x^2+75=100x-400$
 $x^2-100x+75+400=0$
 $x^2-100x+475=0$
 $D=100^2-41475=100000-1900=8100$
 $x_1=\frac{100+90}{2}=95$
 $x_2=\frac{100-90}{2}=5$
 0 твет: 95; 5.

Выполните самостоятельную работу (20 мин).

Івариант		Пвариант	
$1. \log_3(3x - 5) = \log_3(x - 3)$	(2 б)	1. $\log_3(2x - 7) = 3\log(3x - 1)$	(2 б)
2. $Lg(x^2-17)=Lg(x+3)$	(3 б)	2. $\log_2(x-1) = \log_2(x^2 - x - 16)$	(3б)
$3.\log_3(x+5) + \log_3(x+1) = \log_3 5$	(4 б)	3. $Lg(x+1) + Lg(x-1) = Lg3^2$	(46)

УЧЕБНЫЙ ЭЛЕМЕНТ № 4

Цель: закрепить умения решать простейшие логарифмические неравенства.

Рекомендации к выполнению:

Решение логарифмических неравенств основано на том, что функция $y = \log_a x$ при a>1 является монотонно возрастающей на своей области определения, а при 0<a<1монотонно убывающей на своей области определения.

При переходе от простейшего неравенства к равносильным системам неравенств, не содержащих знака логарифма следует учитывать область допустимых значений исходного неравенства.

При решении логарифмических неравенств пользуйтесь следующей схемой:



Пример:
$$\log_3(2x-5) < 2$$
 Решение: $\log_3(2x-5) < 2$ $\log_3(2x-5) < \log_3 9$ Функция $y = \log_3 t -$ возрастающая
$$\begin{cases} 2x-5 < 9 \\ 2x-5 > 0; \end{cases}$$

$$\begin{cases} 2x < 14 \\ 2x > 5; \end{cases}$$

$$\begin{cases} x < 7 \\ x > 2,5 \end{cases}$$
 $x \in (2,5;7)$

Ответ: $x \in (2,5;7)$

Выполните письменную самостоятельную работу (15 мин)

Івариант		Пвариант	
$1.\log_5(3-8x) > 0$	(1 б)	$1.\log_3(2+x) > 0$	(16)
$2.\log_3(x-8) \le 1$	(1 б)	$2.\log_2(3x-2) \le 1$	(1 б)
$3.\log_{\frac{1}{2}}(2x-1) > -2$	(1 б)	$3.\log_{\frac{1}{2}}(x+2) > -2$	(1 б)
4. $Lg(x^2+2x+2) < 1$	(2 б)	4. $Lg(x^2 + x + 4) < 1$	(2 6)

Цель: закрепить умение решать логарифмические неравенства с использованием свойств логарифмов.

Рекомендации к выполнению:

Внимательно рассмотрите решение примеров и выполните задания самостоятельной работы. Пример: Найдите наибольшее целое решение неравенства:

$$\log_3(2x + 1) - \log_3 5 < 0$$

Решение:
 $\log_3(2x + 1) - \log_3 5 < 0$
 $\log_3(2x + 1) < \log_3 5$

Так как основания логарифмов одинаковы и больше 1, то последнее неравенство равносильно системе неравенств:

$$\begin{cases} 2x+1 > 0, \\ 2x+1 < 5; \end{cases}$$

$$\begin{cases} 2x > -1, \\ 2x < 4; \end{cases}$$

$$\begin{cases} x > -\frac{1}{2}, \\ x < 2. \end{cases}$$

$$x \in (-\frac{1}{2}; 2)$$

Т.к. число 2 данному промежутку не принадлежит, то наибольшее целое значение х равно 1. Ответ: 1.

Выполните письменную самостоятельную работу (15 мин.)

I вариант	II вариант	
1.Найдите наибольшее целое решение неравенства: $\log_2(3-2x) - \log_2 13 < 0 \text{(26)}$	1. Найдите наибольшее целое решение неравенства: $\log_{\frac{1}{3}}(3x+1)$ - $\log_{\frac{1}{3}}6>0$ (26)	
2. Найдите наименьшее целое решение неравенства: $\log_2(2x-1) - \log_2(x+1) < 0 (36)$	2.Найдите наименьшее целое решение неравенства: $\log_5(3x+1) - \log_5(x-2) > 0 \ \ (36)$	

Рекомендации к оцениванию:

Ну а теперь, можно подвести итоги.

Набранные баллы по каждому учебному элементу запишите в оценочный бланк и подведите итоги работы.

Сделайте выводы.

Если вы набрали при выполнении учебных элементов №1-5

от 15 баллов до 20 - оценка «3»

от 21 баллов до26 - оценка «4»

от 27 баллов до 29 - оценка «5»

не менее 15 оценка «2»